Tag Archives: high speed bearing

China OEM High Speed Double Row OEM 3215A Angular Contact Ball Bearing with high quality

Product Description

Products introduction
Bearing Feature:
Angular Contact Ball Bearing is mainly applied on high speed, high precision and little axial load occasions, such as airplane engine main shaft, machine tool main shaft and main shafts of other high speed precision machine. It can also be applied on high frequency motor, steam turbine, oil pump, air compressor and printing machine etc. It is 1 of the bearings most widely used in machinery industry.
 
Applications:
Single row angular contact ball bearings: machine tool spindles, high frequency motors, gas turbines, centrifuges, small car front wheel, differential pinion shaft, booster pumps, drilling platforms, food machinery, dividing head, fill welder, low-noise cooling towers, electrical and mechanical equipment, painting equipment, machine slot board, arc welding machine 
Double row angular contact ball bearings: pump, blower, air compressor, various types of transmission, fuel injection pumps, printing machinery, planetary reducer, extraction equipment, cycloid reducer, food packaging machinery, welding machines, electric irons, square box, gravity gun, wire strippers, axle, test analysis equipment, fine chemicals, machinery

All technical details as belows:
Material information:

Specification Steel NO. HRC Chemical composition %
C Si Mn Mo S P Cr
GB/T 18254 Gcr 15 61-65 0.95~1.05 0.15~0.35 0.25~0.45 below 0.08 below 0.571 below 0.571 1.40~1.65

Why choose us?
1). The quality assurance:
Product quality is the lifeline of an enterprise. In order to possessing the leading technology, our company implements the quality control system and establishes a technical and strict inspection team. 
2). The convenient & fast transportation to HangZhou port 
Our factory is located in HangZhou city, eaierly transport to the port by car
3). 24- hour customers series online:
High quality, good credit and excellent service are the tenet of our factory. Customers’satisfaction is our lifeline, as well as our highest honor. We will do our best to meet your requirements, and will do better in the future.

FAQ
Q: Are you trading company or manufacturer ?
A: We are manufacturer.
Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

Other Related

FAQ:

1. Are you a factory or a trading company?
   We are a professional manufacture of deep groove ball bearings and other bearings.

2. Is OEM available?
    Yes, OEM is available. We have professional designer to help your brand promotion. 

3. Is the sample available?
     Yes, samples are available for you to test the quality.

4. Have the products been tested before shipping?
    Yes, all of our bearings have been tested before delivery.

5. How long is your delivery time?
    As mentioned above, there are different types of shipping for your order. We make sure to deliver goods once all products are produced and tested.

6. What is your terms of payment ?
    You can pay by T/T, L/C, etc., and it can be negotiated according to different orders with different amount.

8.How to stock and maintenance my bearings?
   Do not store bearings directly on concrete floors, where water can condense and collect on the bearing;
Store the bearings on a pallet or shelf, in an area where the bearings will not be subjected to high humidityor extreme temperature that may result in condensation forming;

 

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China OEM High Speed Double Row OEM 3215A Angular Contact Ball Bearing     with high qualityChina OEM High Speed Double Row OEM 3215A Angular Contact Ball Bearing     with high quality

China factory High Speed Angular Contact Ball Bearing 72 Series for Machine Bearing near me supplier

Product Description

Bearing Feature:

Angular Contact Ball Bearing is mainly applied on high speed, high precision and little axial load occasions, such as airplane engine main shaft, machine tool main shaft and main shafts of other high speed precision machine. It can also be applied on high frequency motor, steam turbine, oil pump, air compressor and printing machine etc. It is 1 of the bearings most widely used in machinery industry.

 

Applications:

Single row angular contact ball bearings: machine tool spindles, high frequency motors, gas turbines, centrifuges, small car front wheel, differential pinion shaft, booster pumps, drilling platforms, food machinery, dividing head, fill welder, low-noise cooling towers, electrical and mechanical equipment, painting equipment, machine slot board, arc welding machine.
Double row angular contact ball bearings: pump, blower, air compressor, various types of transmission, fuel injection pumps, printing machinery, planetary reducer, extraction equipment, cycloid reducer, food packaging machinery, welding machines, electric irons, square box, gravity gun, wire strippers, axle, test analysis equipment, fine chemicals, machinery.

 

Product Number Bore Dia (d) Outer Dia (D) Width (B) Dynamic Load Rating (Cr) (kN) Static Load Rating (Cor) (kN)
7000 10 mm 26mm 8mm 4.65 2.07
7001 12 mm 28 mm 8 mm 5.05 2.46
7002 15 mm 32 mm 9 mm 5.8 3.15
7003 17 mm 35 mm 10 mm 7.15 3.85
7004 20 mm 42mm 12mm 9.7 5.6
7005 25 mm 47mm 12mm 10.7 6.85
7006 30 mm 55mm 13mm 13.9 9.45
7007 35 mm 62mm 14mm 17.5 12.6
7008 40 mm 68mm 15mm 18.8 14.6
7009 45 mm 75mm 16mm 22.3 17.7
7571 50 mm 80mm 16mm 23.7 20.1
7011 55 mm 90mm 18mm 31 26.3
7012 60 mm 95mm 18mm 32 28.1
7013 65 mm 100mm 18mm 33.5 31.5
7014 70 mm 110mm 20mm 42.5 39.5
7015 75 mm 115mm 20mm 43.5 41.5
7016 80 mm 125mm 22mm 53.5 50.5
7017 85 mm 130mm 22mm 54.5 53.5
7018 90 mm 140mm 24mm 65 63.5
7019 95 mm 145mm 24mm 67 67
7571 100 mm 150mm 24mm 68.5 70.5
7571 105 mm 160mm 26mm 80 81.5
7571 110 mm 170mm 28mm 92 93
7571 120 mm 180mm 28mm 93.5 98.5
7026 130 mm 200mm 33mm 117 125
7571 140 mm 210mm 33mm 120 133
7030 150 mm 225mm 35mm 137 154
7032 160 mm 240mm 38mm 155 176
7034 170 mm 260mm 42mm 186 214
7036 180 mm 280mm 46mm 219 266
7038 190 mm 290mm 46mm 224 280
7040 200 mm 310mm 51mm 252 325

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China factory High Speed Angular Contact Ball Bearing 72 Series for Machine Bearing     near me supplier China factory High Speed Angular Contact Ball Bearing 72 Series for Machine Bearing     near me supplier

China wholesaler Spindle Ball Bearing Precision High Speed Angular Contact /Good Price/Ball Bearing/Needle Roller/Cylindrical/Motorcycle Bearing near me supplier

Product Description

 

We are a senior supplier and professional manufacturer of bearings, our products include: automotive bearings, deep groove ball bearings, automotive wheel bearings, tapered roller bearings, cylindrical roller bearings, linear bearings, auto parts, ball bearings, needle rollers Bearings, stainless steel bearings, housing bearings, ceramic bearings, sliding bearings, motorcycle bearings, custom non-ticket bearings, etc.                                   

Model:

600 Series,6000 series,6200 Series.6300 Series,6400 Series

Precision Level:

ABEC1(P0) ABEC3(P6) ABEC5(P5) ABEC7(P4) ABEC9(P2)

Clearance:

C2,C0,C3,C4,C5

Vibration:

Z1V1,Z2V2,Z3V3,Z4V4

Material:

Carbon,Chrome,Stainless Steel,Plastic.Ceramic,Gcr15 bearing steel, stainless steel

The suffix “2RS” signifies the bearing is sealed, with rubber, on both sides. The suffix “ZZ” signifies the bearing isshielded, with metal, on both sides. Generally speaking, shielded bearings are more practical in cleaner, high-speed applications, while the sealed bearings are more practical for applications of slower speeds and dirtier environments.
papermaking machinery, reduction gears, railway vehicle axles, rolling mill gearbox seats, rolling mill rollers, crushers, vibrating screens, printing machinery, woodworking machinery, various industrial reducers, vertical Self-aligning bearing with seat.

Detailed Photos

  

 The suffix “2RS” signifies the bearing is sealed, with rubber, on both sides. The suffix “ZZ” signifies the bearing isshielded, with metal, on both sides. Generally speaking, shielded bearings are more practical in cleaner, high-speed applications, while the sealed bearings are more practical for applications of slower speeds and dirtier environments.

Multiple Grinding Process

The channel’s grinding is the most important process part for bearing. It can make the channel more smooth. We grind the bearing’s channel 4 or more times, but others may grind only 1 time. Because of the multiple grinding, our bearing’s Inner and outer race’s tolerance is very small, the chamfer is also very smooth.

 

 

 

 

Packaging & Shipping

                           Bearing packing                                                                      Bearing box support                                                       Bearing wooden box support
 

                     Shipping signature                                             Small bearing order by air                                         Shipping for large orders                                  

Q1. What is the advantage about your company?
A1. Our company has professional team and professional production line.
Q2. Why should I choose your products?
A2. Our products are high quality and low price.
Q3. The logo and the color can be customized?
A3. Yes, we welcome you to sample custom.
Q4. Any other good service your company can provide?
A4. Yes,we can provide good after-sale and fast delivery.
Q5: Do you provide samples? Is it free or extra?
A5: Yes, we can provide samples for free, but do not pay for shipping.

 

Standard Length Splined Shafts

Standard Length Splined Shafts are made from Mild Steel and are perfect for most repair jobs, custom machinery building, and many other applications. All stock splined shafts are 2-3/4 inches in length, and full splines are available in any length, with additional materials and working lengths available upon request and quotation. CZPT Manufacturing Company is proud to offer these standard length shafts.
splineshaft

Disc brake mounting interfaces that are splined

There are 2 common disc brake mounting interfaces, splined and center lock. Disc brakes with splined interfaces are more common. They are usually easier to install. The center lock system requires a tool to remove the locking ring on the disc hub. Six-bolt rotors are easier to install and require only 6 bolts. The center lock system is commonly used with performance road bikes.
Post mount disc brakes require a post mount adapter, while flat mount disc brakes do not. Post mount adapters are more common and are used for carbon mountain bikes, while flat mount interfaces are becoming the norm on road and gravel bikes. All disc brake adapters are adjustable for rotor size, though. Road bikes usually use 160mm rotors while mountain bikes use rotors that are 180mm or 200mm.
splineshaft

Disc brake mounting interfaces that are helical splined

A helical splined disc brake mounting interface is designed with a splined connection between the hub and brake disc. This splined connection allows for a relatively large amount of radial and rotational displacement between the disc and hub. A loosely splined interface can cause a rattling noise due to the movement of the disc in relation to the hub.
The splines on the brake disc and hub are connected via an air gap. The air gap helps reduce heat conduction from the brake disc to the hub. The present invention addresses problems of noise, heat, and retraction of brake discs at the release of the brake. It also addresses issues with skewing and dragging. If you’re unsure whether this type of mounting interface is right for you, consult your mechanic.
Disc brake mounting interfaces that are helix-splined may be used in conjunction with other components of a wheel. They are particularly useful in disc brake mounting interfaces for hub-to-hub assemblies. The spacer elements, which are preferably located circumferentially, provide substantially the same function no matter how the brake disc rotates. Preferably, 3 spacer elements are located around the brake disc. Each of these spacer elements has equal clearance between the splines of the brake disc and the hub.
Spacer elements 6 include a helical spring portion 6.1 and extensions in tangential directions that terminate in hooks 6.4. These hooks abut against the brake disc 1 in both directions. The helical spring portion 5.1 and 6.1 have stiffness enough to absorb radial impacts. The spacer elements are arranged around the circumference of the intermeshing zone.
A helical splined disc mount includes a stabilizing element formed as a helical spring. The helical spring extends to the disc’s splines and teeth. The ends of the extension extend in opposite directions, while brackets at each end engage with the disc’s splines and teeth. This stabilizing element is positioned axially over the disc’s width.
Helical splined disc brake mounting interfaces are popular in bicycles and road bicycles. They’re a reliable, durable way to mount your brakes. Splines are widely used in aerospace, and have a higher fatigue life and reliability. The interfaces between the splined disc brake and BB spindle are made from aluminum and acetate.
As the splined hub mounts the disc in a helical fashion, the spring wire and disc 2 will be positioned in close contact. As the spring wire contacts the disc, it creates friction forces that are evenly distributed throughout the disc. This allows for a wide range of axial motion. Disc brake mounting interfaces that are helical splined have higher strength and stiffness than their counterparts.
Disc brake mounting interfaces that are helically splined can have a wide range of splined surfaces. The splined surfaces are the most common type of disc brake mounting interfaces. They are typically made of stainless steel or aluminum and can be used for a variety of applications. However, a splined disc mount will not support a disc with an oversized brake caliper.

China wholesaler Spindle Ball Bearing Precision High Speed Angular Contact /Good Price/Ball Bearing/Needle Roller/Cylindrical/Motorcycle Bearing     near me supplier China wholesaler Spindle Ball Bearing Precision High Speed Angular Contact /Good Price/Ball Bearing/Needle Roller/Cylindrical/Motorcycle Bearing     near me supplier

China Custom Great Quantity Auto Parts Taper Roller Bearing 33110 32008 32206 32209 617476 30208 Bearing Steel Stainless Steel Carbon Steel Brass Ceramics High Speed Bearing with Free Design Custom

Product Description

 


Tapered roller bearings are separable bearings. The inner components and outer rings can be installed separately. The radial and axial clearances of the bearings can be adjusted during installation and use. They are mostly used for automobile rear axle hubs, large machine tool spindles, and high power. Reducer, rollers of conveying device and support roller and work roller of rolling mill.

Single row tapered roller bearings
Matched tapered roller bearings
Double row tapered roller bearings
Four-row tapered roller bearings

1)Taper roller bearings consist of 4 independent components: the cone(the inner ring); the cup(the outer ring); the tapered
roller(the rolling elements); and the cage(the roller retainers).

2)The bearings have taped inner and outer ring raceways between which tapered rollers are arranged, and the conical rollers are
guided by a back-face flange on the cone.

3)The bearings are not self-retaining. As a result, the inner ring together with the rollers and cage can be fitted separately
from the outer ring.

4)These bearings are capable of taking high radial loads and axial loads in 1 direction. In addition, the rollers are increased
in both size and number giving it an even higher load capacity

5)The axial load carrying is determined by the contact angel. The larger angel, the higher the axial load carrying capacity.

6)Sufix of the bearing:

35710 Series – Tapered Roller Bearings

32000 Series – Tapered Roller Bearings

32200 Series – Tapered Roller Bearings

33000 Series – Tapered Roller Bearings

Features and benefits
Low friction
Long service life
Enhanced operational reliability
Consistency of roller profiles and sizes
Rigid bearing application
Running-in period with reduced temperature peaks
Separable and interchangeable
Application:

Car, rolling mill, mining, metallurgical, plastic machinery, etc

We can supply following bearing,
Angular contact ball bearing
Cylindrical roller bearing
Deep groove ball bearings
Insert bearing
Needle roller bearing
Self-aligning ball bearings
Spherical roller bearing
tapered roller bearing
thrust bearing

ZheJiang CZPT Bearing Co.,ltd
ZheJiang CZPT Bearing Co.,ltd is a professional manufacturer and supplier for bearings for more than 15 years. Our factory is located in ZheJiang  province and covering an area of 20,000 square meters, it boasts of 120 staff, among which 6 are senior engineers and technicians, with a registered capital of 20,000,000 and an annual production capacity of 30,000,000 units of bearings.
our export department office is located in ZheJiang  city which is a port city ,for convenience inspection before shipment .
Our main products include ball bearings,roller bearings, wheel hub bearings etc. ,but also we accept customized products design and OEM Service based on the detailed drawings from our clients .
SKF, NSK, NTN, KOYO, NACHI, IKO, NMB , these famous brands all have deep connection and strong cooperation relationship with us . We can also export the above products in appropriate way according to clients’ market .  
After several years’ development, our company has formed a professional management system and our corporate value is “Considering more for customer’s consideration”, which is also our business principle.
Our products are comprehensive used in different fields such as , mining, petroleum, machinery, electric power, furniture etc. We sincerely wish to build reliable relationship with every of our customers from worldwide.
“Good quality with sincere service”  is our slogan to our clients.
 

 

Packing
A. Plastic paper + kraft paper + outer carton + Nylon bag
B. Tube package + outer carton + Nylon bag
C. Single box + outer carton + pallets
D. According to your requirement

Q:Could you accept OEM and customize?                                                           
A:YES,we can customize for you according to sample or drawing.                     

Q:Could you supply sample for free?                                                                     
A:Yes,we can supply sample for free,you only need to pay for the shipping cost?

Q:Could you offer door to door service?                                                                 
A:Yes,by express(DHL,FEDEX,TNT,EMS,4-10 days to your city.)                         

Q:Could you tell me the payment of your company can accept?                           
A:T/T. Western Union, PayPal.                                                                               

Q:Could you tell me the delivery time of your goods?                                            
A:If in stock, 7days or base on your order quantity.                                               

             

We are the factory that is willing to accompany with you to grow and develop together, we hope to establish a long-term cooperative relationship with you. And you are very welcome to contact me and visit our factory.

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China Custom Great Quantity Auto Parts Taper Roller Bearing 33110 32008 32206 32209 617476 30208 Bearing Steel Stainless Steel Carbon Steel Brass Ceramics High Speed Bearing     with Free Design CustomChina Custom Great Quantity Auto Parts Taper Roller Bearing 33110 32008 32206 32209 617476 30208 Bearing Steel Stainless Steel Carbon Steel Brass Ceramics High Speed Bearing     with Free Design Custom