Tag Archives: machine machinery

China wholesaler Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia Bridge Steel Structures with Best Sales

Product Description

Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia bridge steel structure

Introduction&Application:

   The machine is mainly used for processing holes on H-beam, Channel beam with Angle beam and plate drilling and marking processing, high speed, the positioning, feeding of 3 spindles are all driven by servo motor. It adopts spindle servo motor, controls by YOKOGAWA PLC., and in-feeding by CNC carriage, high efficiency, and high precision; and it is wildly used in construction, bridge and tower mast & rack, with other industries.
  The main advantage of high speed CNC drilling SWZ1250H, it’s high speed drilling, rotation speed can reach 3000rpm.
  Due to SWZ1250H using the carbide drill bits, single hole processing efficiency increased to more than 5 times than the normal speed machine, the overall production efficiency more than 2 times than the normal machine.
  For example: 22 mm diameter, thickness 20 mm workpiece, SWZ series drilling 1 hole need about 30 seconds, SWZ1250H series can be controlled within 5 seconds. 

Machine feature: 

     1), The whole machine is optimized integrated design, with high quality machine body and drilling units, which ensure high stability and high rigidity when high speed drilling. This machine is mainly composed of main machine, CNC sliding table (3), drilling spindle box (3), clamping device, detection device, cooling system, scrap box, hydraulic station, lubrication system, Tool Magazine(optional), marking unit (optional).
    2), The main machine is welded by square pipe. The structure of main machine is strengthened where the stress is greater. After welding, artificial aging treatment was carried out. All these ensure the stability of the main machine and then ensure accuracy of the whole machine.
    3), There are 3 CNC sliding tables: fixed side CNC sliding table, movable side CNC sliding table and intermediate CNC sliding table. The 3 sliding tables are similar in structure and are composed of sliding plate, sliding table and servo drive system.
    4), There are 6 CNC axes on the 3 sliding tables, including 3 feeding CNC axes and 3 positioning CNC axes. Each CNC axle is guided by precise linear rolling guide, driven by AC servo motor and ball screw, which ensures positioning accuracy.
    5), There are 3 spindle boxes,  which are mounted on 3 NC sliding tables for horizontal and vertical drilling. Each drilling spindle box can drill both separately and simultaneously.
    6), Used high-speed precision spindle from ZheJiang ‘s well-known brand, model BT, which can meet the using demand of both hard alloy and high-speed steel drill. Every CNC axes are guided by the heavy loading roller linear guide, driven by the servo motor and roller screw which ensure the rigidity and positional accuracy. 
   7). Also equips with hydraulic tool cylinder, using hydraulic -disc spring to do automatic tool de-clamping, tool pulling, with tool status monitoring device to check the tool clamping and effective safety co-locking protection device. Easy to change tools. The spindle is driven by spindle servo and timing belt, reducing ratio i=2 , spindle speed is 0~3000r/min, large rotation speed range.
   8), The workpiece is fixed by hydraulic clamping method. There are 5 hydraulic cylinders, which are clamped horizontally and vertically. Horizontal clamping consists of fixed side datum and moving side clamping, fixed side datum is fixed, moving side clamping is driven by large cylinder sliding table, guided by linear CZPT rail, moving towards the fixed side to clamp the workpiece horizontally; vertical clamping is on both fixed side and moving side, and each cylinder drives the pressure bar to move up and down in 4 positions. The workpiece is clamped vertically.
    9), The machine is fed by a NC carriage. The NC carriage is decelerated by the servo motor through the reducer and then passes through the gear rack to driven a laser alignment device. When the workpiece is fed in, the workpiece can be detected and then fed back to realize the precise positioning of the workpiece.
   10), Cooling system: using air-fog cooling, with the internal and external cooling. Each drilling spindle box is equipped with its own external cooling nozzle and internal cooling joint, which can be selected according to the needs of drilling holes. Internal and external cooling can be used independently or simultaneously.
   11), Chip collecting box: Universal caster guide, easy to carry.
   12), The hydraulic system is for auto tool device of ram type drilling box,Horizontal clamping, vertical clamping, side pushing and power raceway, unified oil supply; all the hydraulic units are from imported brands or joint venture companies, for easy maintenance and solving oil leaking, all the design adopts accumulative valves.If marking unit is equipped, there is also an independent hydraulic station for marking unit action.
   13), Machine equips with auto lubrication system, automatic pump the lubrication oil into and do fully lubrication for each and every part of linear guide, ball screw nuts and every rolling bearings etc at regular time, no need manual lubrication, increase the parts life and save time. All the lubrication pump and units are using famous brands. 
  14), Tool Magazine(optional):Installed 3 inline type tool magazine, which realize the automatic tool change, also meet the demand of drilling multiple diameter’s hole. Oil spray and air spray cooling, has inner cooling and outer cooling efficacy.
  15), Marking unit(optional): The marking unit adopts the disc typing structure, 0-9, A-Z, 36 characters are distributed on the disc, and the position is selected by the servo motor.
  16), The control system is FACTORY PLC. Strong anti-interference, high precision, because of the digital communication, thus overcome the defect of easy be interference in traditional pulse analog transmission.
  17), In order to ensure the accuracy, reliability and stability of transmission system, electrical system, hydraulic system, all the key components are from international famous brand.

Three BT40 Drilling Spindles (Top, Left and Right) with drilling function
Marking Unit and function:
Workpiece Sample with hole groupMain Specification:

Model XT-SWZ1250
Workpiece size H Beam Web x Flange (mm) 150×80~1250×600
U Beam WebxFlange (mm) 150×80~1250×400
Box Beam WebxFlange (mm) 150×80~1250×400
Angle Beam WebxFlange (mm) 200x200x16
  Max. Thickness(mm) ≤80
Max. material length(mm) 12000
Short material limiting mm Automatic processing≥3000
Manual processing: 690~3000
Spindle Spindle Axis 3
Spindle taper BT40
Spindle rotation speed(r/min)
Stepless speed regulation
200~3000
Max. hole diameter(mm) Fixed Side, 
Moving Side
Φ40(High Speed)
Intermediate Unit
Center line movement scope(mm) Center slide table/
Horizontal direction
50~1450
Fixed side/movement side
Vertical direction
30~770
3 Positioning CNC axis moving speed m/min 0-10m/min
3 feed CNC axis moving speed m/min 0-5m/min
Web width detection stroke mm 1100
Web height detection stroke mm 290
Motor power Spindle motor power (KW) 3*11
Servo motor power of 3 Pcs feeding Axis(KW) 3*2
Servo motor power of 3 Positioning Axis (KW) 3*1.5
Feeding Trolley Feeding trolley servo motor(KW) 5
Maximum feeding speed(m/min) 20m/min
Maximum feeding weight(Tonnes) 10T
Control system CNC System Japan YOKOGAWA PLC
CNC Axis Quantity 7
Hydraulic system Max. Hydraulic Pressure (MPa) 7.5
Motor power(KW) 5.5
Cooling system No. of  Nozzle 3
Pressure of compressed air (Mpa) ≥0.5
Cooling way Internal Cooling & External Cooling
Tool Magazine(optional) Tool Magazine Quantity 3
Tools quantity for each Magazine 4 Pieces
Marking unit(optional) No. of Characters 36 Characters
Characters Size Φ10 mm
Imprinting Depth 0.8~1.5mm
Position servo motor(KW) 0.75
Working environment Working power Three phase 4 wire system 380±10%V, 50HZ
Control power 220±10%V 50HZ
Operate power 24V DC
Working temperature 0ºC ~ 40ºC
Humidity of environment ≤75%
Overall dimension(L×W×H)(mm) About 6000×2100×3400
Main Machine weight (Kg) About 8000

List of the Key Outsourced Components:

NO. Name Manufacturer
Main Electric Component
1 Control system Japan FACTORY PLC
2 Servo Motor Japan Panasonic
3 Servo Driver Japan Panasonic
4 Spindle motor Brand of China
5 Computer Lenovo China
6 Rotary encoder Weidmuller
7 Proximity Switch Normal Open Brand of china
Normal Close
8 Proximity switch Brand of china
9 Photoelectric Switch Germany SICK
Main Hydraulic Pressure Components
1 Hydraulic valves(Main) Italy ATOS
Main Mechanical Components
1 Ball screw ZheJiang
2 Linear guide ZheJiang
3 Precision spindle ZheJiang
Other components
1 Spraying cooling pump ARXIHU (WEST LAKE) DIS.NE
2 Nozzle BIJUR
3 Pneumatic 2 couplet AirTac
4 Cylinder AirTac

   Note: The above parts are supplied by our Approved Suppliers. If encounter special situation, we will take replace with same or higher quality level parts.

Applicable Industry:
    The machine tool is mainly used for drilling H-shaped steel, channel steel and other workpieces, and is widely used in construction, bridges and other industries.

Company Introduction:
    ZheZheJiang nshine CNC is always focusing on our ultimate goal – to secure and increase our customer’s productivity – has made us the leader in China market in the manufacture of machines for processing angle bar, beam channel profiles, steel plates, tubesheet and flanges, mainly serving for fabricating iron towers, steel structure, heat exchangers, boilers, bridges, and trucks.Strong R & D center with more than 10 engineers team, 25 years of experience from year 1996, more than 100 staff, plant area about 25,000 sqm., very harsh quality control of every component and the whole machine, about 12 million US dollars sales turnover per year.
     
     Sunshine CNC machines’ market share in China is around 70% and exported to 50+ countries across globe market. All top ranked tower manufacturers, steel structure fabricators and power station makers, bridge/railway manufacturers, truck makers are our clients.
   
    Main products: CNC Angle Line, CNC Beam Drilling Sawing Machine, CNC Plate Drilling Machine, CNC Rail Processing Machine, CNC Tubesheet Flange Drilling Machine, Truck beam plate punching machine, etc. 

    One measure of the outstanding quality of our machines is their longevity: many Sunshine’s machines have been in operation for more than 10 years! Many clients are continually placing repeated orders which verified well our machines’ perfect quality and reliable performance.

     The company drafted many China national standards for CNC angle line machine and CNC beam drilling sawing machine and CNC plate drilling machine.
Relevant Certificate:

  After-sales Service:
  Training for installation and service:

  A. We will supply the machine with training video and user’s manual in English for installing, operation, maintenance and trouble-shooting, and shall give technical CZPT by e-mail, , Wechat, telephone/MSN/ICQ and so on, when you meet some problems of installation, using or adjusting.
 

  B. You can come to our factory for inspection and training. We will provide professional guide. Direct and effective face-to-face training. Here we have assembled equipment, all sorts of tools and testing facility,we will also provide accommodation during training period.

  C.The Strong after–sale service team in China, Our engineers (staffs) can speak fluent English to communicate and solve question when you have requirement calendar day per person.

  D. Depending on the region, If need our engineer to visit for installation, we will dispatch engineer for installation and service at your site.

 
  
Warranty:

   The guarantee period of quality shall be 12 months counting from the date on which the machine finished installation and accept by Buyer. We are responsible for providing the free of charge during the guarantee period. If out of guarantee time, all damaged parts are charged.

  Packaging of interntaional standard way 

  FAQ:
   1. When can you arrange shipment?
    For machines available in stock, the shipment can be arranged within 15 days after getting advance payment or L/C;
    For machines non available in stock, the shipment can be arranged with 60 days after getting advance payment or L/C.

    2. What can you do if my machines have problems?
    1) We can send you free components if machines are in warranty period;
    2) 24 hours service on line;
    3) We can assign our engineers to serve you if you want.

    3. Do you provide machine operation training?
     Yes. We can send professional engineers to the working site for machine’s installation, commissioning and operation training.

    4. Which machine model shall I choose when I purchase from you?
    Please share us your material size and your processing request, then we will recommend our machine most suitable and most cost effective for your work demand.

   5. What’s your machine’s market share in China?
   Our market share in China is about 70%+, and we’ve exported to 50+ countries across the globe market, since year 1996.

If you have an questions, pls call us without hesitation. Thanks! 

Best Regards 
Jack-Director 

  
 

 

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China wholesaler Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia Bridge Steel Structures     with Best SalesChina wholesaler Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia Bridge Steel Structures     with Best Sales

China Best Sales CNC Drilling Machine for Window and Door Processing Machinery near me manufacturer

Product Description

 CNC aluminum profile Milling Machine SKX-CNC-1200

Product Description

Feature

1. The machine is used for drilling holes, milling grooves, processing round holes and special-shaped holes,plane engraving of aluminum alloy profiles.

2. Adopted ZheJiang Syntec CNC Control system.

3. Adopted the electric spindle, high precision, high safety and reliability.

4. X axle adopts high precision helical gear and rack, Y and Z axiss adopt high-precision ball screw trassmission, steady transmission and high precision.

5. By using programming software to transform and process G code automatically, easy operation, high efficiency and low labour intensity.

6. workbench can turn 180°,-90°0°+90°, it can realize material three-sides section processing by clamping 1 time, it can process deep and special-shaped holes through workbench turning, high efficiency and precision,

Product Parameters

 

Parameter

 

Air Pressure

0.5~0.6MPa

X/Y/Z Axis stroke

1200mm*300mm*280mm

Input Voltage

380V 50Hz or As Customer need

Input Power

3Kw

Handle type

ER25*Φ8

Processing range

100*140

Overall size

2200×1500×19500mm

Weight

700kg

Main accessory

 

Control system

ZheJiang  Syntec

Solenoid valve

Germany FESTO

Cylinder

PC(FESTO Joint Venture Brand)

Motor

ZheJiang  SHangZhou (Best Chinese Motor Brand)

Air Filter Device

STNC

Electrical Button and Switcher

Schneider

AC Contactor and Circuit Breaker

Schneider

Approach Switch

ZheJiang  Delta

Xihu (West Lake) Dis. rail

ZheJiang  Hiwin

Standard accessory

 

Cutters

4pcs

Air Gun

1pc

Complete tooling

1set

Certificate

1pc

Operation Manual

1pc

Remarks

1. All the electrical elements,Circuit breaker protection and AC contactors are schneider or other world famous brand.

2. International CE standard high flexibility, high shielding cables.

3. Warranty time: 1 year

4. Quotation Valid: 90 days                                                                               

5. Payment terms: 30%T/T as deposit, 70% balance made before shipment by T/T

6. Delivery time: 30 days upon receipt of 30% deposit by T/T         

7. Packaging: Film packaging and fumigation-free wooden case(if delivery by full container load, then without wooden box, just use the tray)

8. After sales service:      

1)24 hours service on Internet and Telephone, free instructions and problem solving  

2) Free training to make sure a master of the operating of cnc router for the person who come to our factory  

3)User-friendly English manual or operating video for machine using and maintaining

4) on-the-spot training, installation and repairing can be met if required.(If so, need the buyer afford the visa and air ticket and 60USD/DAY Salary)
 

Detailed Photos

 

Other machines:

 

 

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China Best Sales CNC Drilling Machine for Window and Door Processing Machinery     near me manufacturer China Best Sales CNC Drilling Machine for Window and Door Processing Machinery     near me manufacturer

China OEM Machinery Baler Accessories Knotter Spindle Machine Shaft with Best Sales

Product Description

Product Description

 

Specification

item

value

Condition

New

Warranty

3 months

Applicable Industries

Farms, Retail, other

After Warranty Service

Video technical support, Online support

Local Service Location

none

Showroom Location

none

Video outgoing-inspection

Provided

Machinery Test Report

Provided

Marketing Type

Ordinary Product

Type

Hay baler

Use

Cultivators

Place of Origin

China

Brand Name

Creations

Certificate

ISO9001

Packing & Delivery

Generally, we pack your goods in hard brown box for small machine and plywood box for big machine.

Company Profile

 

undefined

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2015,sell to Mid East(42.00%),Eastern Asia(58.00%),Central America(63.00%),Africa(36.00%). There are total about 51-100 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Wheel Hub Spare Part,Baler Machine,Metallurgical Machine Spare Part,Axle Bearing Spare Part,Cast Iron Spare Part

4. why should you buy from us not from other suppliers?
null

5. what services can we provide?
Accepted Delivery Terms: null
Accepted Payment Currency:null;
Accepted Payment Type: null;
Language Spoken:null

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China OEM Machinery Baler Accessories Knotter Spindle Machine Shaft     with Best SalesChina OEM Machinery Baler Accessories Knotter Spindle Machine Shaft     with Best Sales

China Standard CE Agl-185 Width 1800mm Hydraulic Flip Lawn Mower Heavy Sickle Alfalfa Hay Disc Garden Grass Machine Agricultural Machinery Trimmer Reciprocating Rotary Tractor near me manufacturer

Product Description

Made in China, Sold to the world
Versatile, Easy, Affordable, Powerful, Reliable

 

AGF/AGL series Hydraulic flip lawn mower product description

AGF/AGL series Hydraulic flip lawn mower product description

AGF/AGL series lawn mower By high-speed rotation of spindle, it is used for mowing in the field, and weeds no more than half a meter. It can turn over its body, for weeds on a slope and side trimming on the trees.
Hydraulic flip mower provide an effective solution for the control of excessive growth. PTO flail mower, also known as mulching mowers, are designed to mow and shred concurrently. The shredded materiall acts as an effective mulch, to retard ensuing growth while providing a medium that will better release nutrients into the soil.

Main sales territory: regions Europe, the United States, Russia, Ukraine, South America, Africa, southeast Asia and Australia.

 AGF/AGL series Hydraulic flip lawn mower Product Selling Points 

1. Transmission: By sturdy toothed belts.
2. It has hydraulic cylinders to adjust the right and left movement and turn over the body.
3. Gearbox is made of graphite casting iron. Material performance is better. Not easy broken.
4. After dynamic balance test, the blade axle can run stably at high speed, with lower noise.
5. The blades have more quantity, bigger density and higher mowing efficiency.
6. The roller is equipped with bearing on both ends, so it can run more flexibly, without stronger wearing.
7. Y shape blades and hammers are optional, to meet the needs of different customer.
8. The body can be turned over, so it has a wider range of application.
9. The verge Mowers are suitable for roadside verge, tree trimming and general mulching;
10. Hydraulic side adjustment;
11. Hydraulic inclining adjustment;

AGF series Hydraulic flip lawn mower technical parameters

Model AGF-145 AGF-165 AGF-185 AGF-200 AGF-220
Dimension(L×W×H) 1800×2225×1571mm 2000×2225×1571mm 2200×2225×1571mm 2400×2225×1571mm 2600×2225×1571mm
Structure Weight 598kg 670kg 750kg 830kg 900kg
Cutting Width 1400mm 1600mm 1800mm 2000mm 2200mm
PTO Turnning Speed 540r/min 540r/min 540r/min 540r/min 540r/min
PTO Spline 6×8×1600mm 6×8×1600mm 6×8×1600mm 6×8×1600mm 6×8×1600mm
Tractor HP 40-85HP 50-100HP 60-120HP 80-120HP 100-150HP

AGL series Hydraulic flip lawn mower technical parameters

Model AGL-125 AGL-145 AGL-165 AGL-185
Dimension(L×W×H) 1480x2225x1571mm 1800×2225×1571mm 2000×2225×1571mm 2200×2225×1571mm
Structure Weight 320kg 340kg 360kg 370kg
Cutting Width 125cm 1400mm 1600mm 1800mm
PTO Turnning Speed 540r/min 540r/min 540r/min 540r/min
PTO Spline 6x6x850 6×8×1600mm 6×8×1600mm 6×8×1600mm
Tractor HP 25~40hp 30-50HP 50-80HP 60-100HP

AGF/AGL series Hydraulic flip lawn mower  details show

Other series of lawn mowers on display


Lawn mower packaging and shipping link display

Picture display of tractors produced by our company

Our company produces other agricultural machinery display

Factory introduction

ZheJiang Euro Star Machinery Manufacture Co., Ltd. is a professional agricultural machinery manufacturer integrating R&D, design, manufacturing, sales and service. The company products cover road transport machinery, harvest machinery, equipment for plant protection, agricultural implements and agricultural unmanned machinery.
As a professional machinery equipment manufacturer in China, the company has committed itself to provide all-round solution to global modern agricultural mechanization. The company has integrating high-end products and technologies resources around the world by upgrading of technologies, quality and service and bringing forth new ideas to create innovative products as so to improve reputation and market share of CZPT in the world step by step.
The company has worked out comprehensive quality manual and quality control procedure files at all levels based on ISO9001:2000, covering product development, part purchase, production and manufacturing, quality inspection, sales and after-market service, so as to control the product quality on the whole.
Supported by comprehensive quality assurance system and developed sales and service network, the company has made leaping increase of sales in domestic market via trustful quality and outstanding service mode. Besides, Most of the company’s products have passed the European CE certification.products are exported to Europe, America, Latin America, the Middle East, Asia-Pacific, CIS, Africa and more than 50 countries and regions.Our products have been recognized by all foreign customers, and we are happy to establish long-term cooperative relationships with new friends.
Xihu (West Lake) Dis.g at satisfying the customers, we have worked hard to provide excellent and quick service to customers both at home and abroad via advanced technologies, developed products and comprehensive network so as to maximize the customer satisfaction.
In future, the company will adhere to the principle of sound business operation, continuous innovation and opening up and cooperation to create more high-end
machinery and equipment based on current ones for the society and for agriculture and contribute to global modern agriculture production.

Agricultural machinery factory production equipment display
Service

One-stop business chain service support system
With an international service team with rich experience and excellent skill, company is committed to build a complete service guarantee system, which is professional, fast, efficient and comprehensive. Every consumer in overseas would receive a full-process service guarantee including pre-sales, on sale and after sales through the way of markets, spare parts, training service and technical support.

1) Market Service
Service Mode : Stationary Point + Circuit Service
Long-term Stationary Point Service
Short-term Circuit Technology Support Service
Service Process: Standard, High Efficient, Seasonable
Service Image: Professional, Unified

2) Spare Parts Service
Spare Parts Guarantee Measures: Dealer+ Spare Part Warehouse
100% original spare parts assure good quality;
Bar-code system adopted in the whole process assures accuracy and promptness;
Professional and accurate package and logistics assure safe and relieved transportation.

3) Training Service
Characteristic Training Mode: invite the technicians of dealers to factory for training, send engineers to dealers for training;
A full range of training tools, multi-language training materials, vivid training video;
Professional training teachers with rich service experience and good communication capability;
One-to-1 special assignment training;
Remote online network training;

4) Technical Support
The whole process Technology support covers on sale and after-sale service.

Terms of the deal:

1). Delivery: 20 days for normal orders
2). Price: We have price on basis FOB HangZhou and CIF your destination for your choice
3). Payment terms for first order:
—–T/T 30% deposit and balance before shipment
—–100% L/C at sight
4). Payment for long terms cooperation of good reputation partners, we have SINOSURE insurance for our VIP clients, and we can offer credit service after we familiar with each other. We are looking for partnership for long-term business

FAQ:

Why choose us?
1). The quality is guaranteed due to strong technical support ,first class component ,advanced production line and strict quality control system.
2). Be leading Expert in global market for more than 5 years, China Famous Export Brand recommended by CCCME (China Chamber of Commerce for Import and Export of Machinery and Electronic Products)
3). One-stop service with a large spare parts warehouse and professional service team .No matter where you are, you are guaranteed of Eurostar’ s warm reception, trustworthy and efficient professional services and persistent care.

How Shipment?
We have worked with many world famous shipping carriers and can arrange shipment to any country in the world, it can save your time and money. We can provide airfreight and CZPT service.

Contact us
Mr. Duke Zhang
ZheJiang Euro Star Machinery Manufacture Co., Ltd.
Add: 198 HangZhou Street, Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province,P.R.C.
Web:eurostartractor

EUROSTAR CUSTOMERS ALL OVER THE WORLD

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China Standard CE Agl-185 Width 1800mm Hydraulic Flip Lawn Mower Heavy Sickle Alfalfa Hay Disc Garden Grass Machine Agricultural Machinery Trimmer Reciprocating Rotary Tractor     near me manufacturer China Standard CE Agl-185 Width 1800mm Hydraulic Flip Lawn Mower Heavy Sickle Alfalfa Hay Disc Garden Grass Machine Agricultural Machinery Trimmer Reciprocating Rotary Tractor     near me manufacturer