Tag Archives: vertical milling machine

China supplier Sumore CE Approved Made in Shanghai China Vertical Milling Machine 5 Axis CNC Vmc with Great quality

Product Description

Product Description

Factory direct Sale High Precision Small VMC CNC Machining Center SMC8450
(VMC from small to big size, the web pages are limited, so please contact us for more details)

As 1 new product of independent design & development, SMC8450 is a multi-purpose machine which could mill surface & drill holes. This machine adopts domestic/overseas branded numerical control system and realizes full-screen edition in Chinese. Spindle adopts imported frequency converters, which could fulfill variable speed control & constant linear speed cutting functions; machining body adopts ultrasonic frequency hardening treatment; both X-axle & Z-axle adopts step/servo motor, which could process feeding motion by directly connecting shaft coupling & ball screws.

With high power, pleasant rigidity, high precision & storage, high price-quality ratio and long cycle life, the machine is widely applied to instruments, meters, light industries, electronics, home appliances, medical instruments, aeronautics & astronautics and etc. industries, it is 1 small-medium precision & complex machine for processing various materials (especially non-ferrous metals & stainless steel) as well as an ideal equipments for large automation production.

This machine could process holes below ∮16, milling plane below 18 and milling depth below 3mm.

.

Product Parameters

Model SMC8450
Worktable Size 800X260mm
Travel(Longitudinal X/Horizontal Y/Vertical Z) 500X320X450mm
Main Motor Power   3.7KW
Spindle Max. Rotating Speed Servo Spindle 6000rpm (optional 8000rpm 10000rpm)
Z Motor Torque 7.7N.m
X Motor Torque 6N.m
Y Motor Torque 6N.m
Spindle Taper BT40
Distance of Spindle Axis to Xihu (West Lake) Dis.way Plane 360mm
Distance of Spindle End to Worktable 90-470mm
The Vertical Permissible Error of Spindle Axis to Worktable Plane ≤0.02mm
Positioning Accuracy 0.01mm
Repeated Positioning Accuracy 0.02mm
Machine Overall Dimension   2600*1950*2400mm
Net/Gross Weight 2200/2300kgs
Packing size 2270x1880x2500mm

Company Profile

As the professional and experienced manufacturer of lathe, mill , drill , cnc and other tools ,ZheJiang SUMORE Industrial Group has been in this filed for more than 20 years.

We have got the certificates of CE, GS ,Rohs , CSA ,UL ,etc . Also we have been in business with GSK ,Siemens ,Faunc and other famous companies within 50 countries all over the world.

Whether you need the standard or the customerised products , please contact us directly . Our professional and experienced engineers and after sale service team will meet your needs.

Hope to cooperate with you!

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China supplier Sumore CE Approved Made in Shanghai China Vertical Milling Machine 5 Axis CNC Vmc     with Great qualityChina supplier Sumore CE Approved Made in Shanghai China Vertical Milling Machine 5 Axis CNC Vmc     with Great quality

China manufacturer Vmc1380 Vertical Table CNC Milling Machine Center Frame wholesaler

Product Description

Products Description:

  We can provide the frame machine, you can customize the outer protective cover.
        

Product Description

 

FEATURE:

1).The machine major structure is forged by the unique iron fining inner side after temper and finite element analysis by the professional Software, which have the high strength, good stability and non-flexible feature, all the features guarantee the whole machine’s rigidness and stable precision after long time use.
2).The 3 axles adopts linear sliding track design coordinates Teflon tracking flat and has the feature of high rigidness, high wear resistance and stable processing.
3). The transmission shaft adopts CZPT precision bearing from Japan and precision ball screw from Xihu (West Lake) Dis. ZheJiang .the ball screw pre -stretching before installment to improve the transmission shaft rigidness and reduce extension when running because of the thermal effect, which improve the long time using under accuracy
4).The spindle structure has the the stranger fining inner side and matched spindle from famous brand HangZhou in ZheJiang , adopts P4 super precise bevel angle rolling ball bearing and maximum span support design, that make the spindle can bear the max radial direction and shaft direction thrust to reduce the shaking when cut heavy.

Working conditions
(1)three-phase AC power supply: 380V ±10% ≤ 15%; 50Hz ±1Hz, main power wire 8mm or larger, ground wire 8mm or larger .
(2)ambient temperature: 8 – 40C °
(3)relative humidity: ≤ 80%
(4) far away from light source, vibration source and heat source, away from high frequency power generation motivation, discharge motivation, welding machine, etc., to avoid electrical interference caused by machine tool NC system fail

Product Parameters

 

Machine model unit VMC1380
X/Y/Z travel mm 13 China. You are warmly welcomed to visit us.

5. What is your trade terms?
FOB, CFR and CIF all acceptable.

6: What’s the Payment Terms?
T/T ,30% initial payment when order ,70% balance payment before shipment ; Irrevocable LC at sight .

7: What’s the MOQ?
1 set .(Only some low cost machines will be more than 1 set ).

What Are the Advantages of a Splined Shaft?

If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts

When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are 2 main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each 1 is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
splineshaft

They provide low noise, low wear and fatigue failure

The splines in a splined shaft are composed of 2 main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
splineshaft

They can be machined using a slotting or shaping machine

Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are 2 common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between 2 centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.

China manufacturer Vmc1380 Vertical Table CNC Milling Machine Center Frame     wholesaler China manufacturer Vmc1380 Vertical Table CNC Milling Machine Center Frame     wholesaler

China Custom Factory Sale 4 Axis CNC Milling Machine Vmc 850 CNC Vertical Machining Center Vmc650 Vmc400 Vmc320 Vmc1160 with Great quality

Product Description

Product Description

SP8126 NEW 3 4th VMC Vertical cnc metal milling machine center mini small CNC machining center with 800X260MM table Factory direct Sale Sp8126  3 4th Factory Vmc Vertical CNC Metal Milling Machine Center Mini Small CNC Vertical Machining Center with 800X260mm Table VMC550 VMC650 VMC850 VMC1160 factory sale 4 Axis CNC Milling Machine VMC 850 CNC Vertical Machining Center VMC650 VMC400 VMC320 VMC1160
(VMC from small to big size, the web pages are limited, so please contact us for more details)

As 1 new product of independent design & development, SMC8450 is a multi-purpose machine which could mill surface & drill holes. This machine adopts domestic/overseas branded numerical control system and realizes full-screen edition in Chinese. Spindle adopts imported frequency converters, which could fulfill variable speed control & constant linear speed cutting functions; machining body adopts ultrasonic frequency hardening treatment; both X-axle & Z-axle adopts step/servo motor, which could process feeding motion by directly connecting shaft coupling & ball screws.

With high power, pleasant rigidity, high precision & storage, high price-quality ratio and long cycle life, the machine is widely applied to instruments, meters, light industries, electronics, home appliances, medical instruments, aeronautics & astronautics and etc. industries, it is 1 small-medium precision & complex machine for processing various materials (especially non-ferrous metals & stainless steel) as well as an ideal equipments for large automation production.

This machine could process holes below ∮16, milling plane below 18 and milling depth below 3mm.

.

Product Parameters

 

Model SP8126
Main Motor Power KW 3.7KW
Spindle Max. Rotating Speed Servo Spindle 8000rpm 
Z Motor Torque 7.7N.m
X Motor Torque 6N.m
Y Motor Torque 6N.m
Spindle Taper BT40
Worktable Size 800X260mm
Travel(Longitudinal X/Horizontal Y/Vertical Z) 450X320X450mm
Distance of Spindle Axis to Xihu (West Lake) Dis.way Plane 360mm
Distance of Spindle End to Worktable 90-510mm
The Vertical Permissible Error of Spindle Axis to Worktable Plane ≤0.02mm
Positioning Accuracy 0.02mm
Repeated Positioning Accuracy 0.01mm
Machine Overall Dimension (L*W*H) mm 2600*1950*2400
Machine Net Weight KG 2400
Magazine Capacity 10/12 (Bamboo Hat)
System Configuration Siemens/GSK/Fanuc
External Protection Level Full Closed

Company Profile

As the professional and experienced manufacturer of lathe, mill , drill , cnc and other tools ,ZheJiang SUMORE Industrial Group has been in this filed for more than 20 years.

We have got the certificates of CE certificate . Also we have been in business with GSK ,Siemens ,Faunc and other famous companies within 50 countries all over the world.

Whether you need the standard or the customerised products , please contact us directly . Our professional and experienced engineers and after sale service team will meet your needs.

Hope to cooperate with you!

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China Custom Factory Sale 4 Axis CNC Milling Machine Vmc 850 CNC Vertical Machining Center Vmc650 Vmc400 Vmc320 Vmc1160     with Great qualityChina Custom Factory Sale 4 Axis CNC Milling Machine Vmc 850 CNC Vertical Machining Center Vmc650 Vmc400 Vmc320 Vmc1160     with Great quality

China Standard Economic China Vertical Machinig Center Xh7126 CNC Milling Machine for Sale with Good quality

Product Description

Economic China Vertical Machinig Center XH7126 CNC Milling Machine For Sale

Feature:
As 1 new product of independent design & development, XH7126 is a multi-purpose machine which could mill surface & drill holes. This machine adopts domestic/overseas branded numerical control system and realizes full-screen edition in Chinese. Spindle adopts imported frequency converters, which could fulfill variable speed control & constant linear speed cutting functions; machining body adopts ultrasonic frequency hardening treatment; both X-axle & Z-axle adopts step/servo motor, which could process feeding motion by directly connecting shaft coupling & ball screws.
With high power, pleasant rigidity, high precision & storage, high price-quality ratio and long cycle life, the machine is widely applied to instruments, meters, light industries, electronics, home appliances, medical instruments, aeronautics & astronautics and etc. industries, it is 1 small-medium precision & complex machine for processing various materials (especially non-ferrous metals & stainless steel) as well as an ideal equipments for large automation production.
This machine could process holes below ∮16, milling plane below 18 and milling depth below 3mm.

Technical parameter:

Model XH7126
Main Motor Power KW 3.7KW
Spindle Max. Rotating Speed Servo Spindle 6000rpm
Z Motor Torque 7.7N.m
X Motor Torque 6N.m
Y Motor Torque 6N.m
Spindle Taper BT40
Worktable Size 800X260mm
X,Y,Z axis travel 450X320X420mm
Distance of Spindle Axis to Xihu (West Lake) Dis.way Plane 360mm
Distance of Spindle End to Worktable 90-510mm
Positioning Accuracy 0.02mm
Repeated Positioning Accuracy 0.01mm
Machine Overall Dimension (L*W*H) mm 2600*1950*2400
Machine Net Weight KG 2400
Magazine Capacity 12 (Bamboo Hat)

 

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China Standard Economic China Vertical Machinig Center Xh7126 CNC Milling Machine for Sale     with Good qualityChina Standard Economic China Vertical Machinig Center Xh7126 CNC Milling Machine for Sale     with Good quality

China best CNC Vertical Turning Lathe Machine for Wheels Milling Attachment wholesaler

Product Description

cnc vertical turning lathe machine for wheels milling attachment 
 

 

 

1.Product Description

 

Our company developed the cnc vertical turning lathe machine. The machine covers a small space, can be designed to meet different space request.

This series machine is suitable for machining parts in all industries. On the machine cylindrical turning and boring . tapering and surfcing as well as grooving can be carried out rough and finishing.Since the workpiece is mounted on the horizontal worktable, it is more convenient to clamp the workpiece.
 

2.Main Features


1. The machine tool is of roller type linear slide rail, with ultrahigh rigidity and overload capacity, substantially improving positioning accuracy and bearing capacity in regard to vertical and horizontal feed movement.

2. The machine tool spindle belt pulley is connected with that of spindle numerical control servo motor through belt, equipped with 22Kw motor for infinitely variable speed of wide range, satisfying different spindle speed required for parts rough machining and finish machining.

3. Both the vertical and horizontal feed is controlled by servo motor automatically. The vertical direction setting Balance weight

structure greatly extend the life cycle of lead screw

4. Automatic tool holder: the tool and detection station conversion can be realized by CNC system.

5.Automatic lubrication system is used for main moving parts.

6.Can choose different machine appearance.

3.Specification

 

Specification UNIT VTC450 VTC60 VTC70
Max.Swing diameter mm 500 650 700
Spindle speed rpm 100~1500 100~1000 100~1000
Cutting feed speed mm/min 0.1~1000 0.1~1000 0.1~1000
Vertical moving distance of tool holder mm 550 600 700
Tool rest horizontal moving distance mm 400 450 700
Longitudinal fast moving speed mm/min 16000 16000 16000
Transverse fast moving speed mm/min 16000 16000 16000
Tool holder form   horizontal horizontal horizontal
Diameter of hydraulic chuck mm 400/500 400/500 400/500/630
Main motor power Kw 15 18.5 22
positioning accuracy mm ±0.008 ±0.008 ±0.008
Re -positioning accuracy mm ±0.004 ±0.004 ±0.004
Machine size mm 2000x1900x3030 2000x1900x3030 2050x1800x3200

 

 

 

4.Application

CNC Vertical Lathe is suitable for internal and extemal turning,internal and extermal tapering,circula
arc,facing,slotting,thread,drilling,reaming,boring,chamfering of big diameter axle parts and disc type parts. The machine has awidely use,high efficiency,good stability,easy to operate.It can achieve the high-precision processing of single or batch processing.

 

5.Packaging Details
 

 

Packaging Details

1. Packing method: Internal plastic moisture-proof anti-rust packaging, External wooden packaging, Exclusive container transport.
2. Mode of transport: by sea or by land.

 

6.Our services
 

Our services are divided into pre-sale, sales, after-sale 3 parts.

 

Pre-sale:to provide detailed advice, the program recommended to the factory inspection, as far as possible to meet your questions and needs.
Sales:can support samples, support diversified payment methods, the solid forklift tire press machine production process
transparent,standardized and quickly stocking.
After-sales:support diversification guidance, training, voice and video images, and even solid forklift tire press machine overseas site installation, on-site training, home maintenance, continuous return visit customers concerned about the use

7.Company information

Zhongyou has passed the ISO quality management system certification,Products are exported to more than 50 countries and regions including Europe, America, Asia, Oceania and Africa.Has a number of product patents and honor certificates,is a continuous innovation machinery and equipment company.
 

 

8.FAQ

1:How can I choose the most suitable machines ?
A: Please tell me your specifications ,we can choose the best model for you , or you can choose the exact model .You can also send us the products drawing ,we will choose the most suitable machines for you .

2: How can I get a quotation?
A: Pls tell us the machine you need, including quantity, raw materials and other requirements.

3: Where is your factory located? How can I visit there?
A : Our factory is located in HangZhou City ,ZheJiang Province,277500 China. You are warmly welcomed to visit us.

4. What is your trade terms?
A : FOB, CFR and CIF all acceptable.

5:How can i trust your company?
A:We have professional design, we can provide you suitable suggestion and lowest price
1. Assessed by third party, national patents and CE, ISO for all equipment, 

 

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China best CNC Vertical Turning Lathe Machine for Wheels Milling Attachment     wholesaler China best CNC Vertical Turning Lathe Machine for Wheels Milling Attachment     wholesaler

China best Economic Cheap CNC Machining Center (China CNC Vertical Milling Machining Center Machine XH7126) with high quality

Product Description

Economic Cheap CNC Machining Center (China CNC Vertical Milling Machining Center Machine XH7126)

Feature :

This machine adopts domestic/overseas branded numerical control system and realizes full-screen edition in Chinese. Spindle adopts imported frequency converters, which could fulfill variable speed control & constant linear speed cutting functions; machining body adopts ultrasonic frequency hardening treatment; both X-axle & Z-axle adopts step/servo motor, which could process feeding motion by directly connecting shaft coupling & ball screws.
With high power, pleasant rigidity, high precision & storage, high price-quality ratio and long cycle life, the machine is widely applied to instruments, meters, light industries, electronics, home appliances, medical instruments, aeronautics & astronautics and etc. industries, it is 1 small-medium precision & complex machine for processing various materials (especially non-ferrous metals & stainless steel) as well as an ideal equipments for large automation production.

Technical Parameter :

Model XH7126
Main Motor Power KW 3.7KW
Spindle Max. Rotating Speed Servo Spindle 6000rpm 
Z Motor Torque 7.7N.m
X Motor Torque 6N.m
Y Motor Torque 6N.m
Spindle Taper BT40
Worktable Size 800X260mm
Travel(Longitudinal X/Horizontal Y/Vertical Z) 450X320X420mm
Distance of Spindle Axis to Xihu (West Lake) Dis.way Plane 360mm
Distance of Spindle End to Worktable 90-510mm
The Vertical Permissible Error of Spindle Axis to Worktable Plane ≤0.02mm
Positioning Accuracy 0.02mm
Repeated Positioning Accuracy 0.01mm
Machine Overall Dimension (L*W*H) mm 2600*1950*2400
Machine Net Weight KG 2400
Magazine Capacity 12 (umbrella type)
System Configuration  
External Protection Full Closed
Controller GSK928

Standard Accessories :

No. Name
1 GSK928 Control System
2 12 tools umbrella type Magazine
3 Linear CZPT way
4 Oil coolant pump
5 Working Lamp
6 Mobile pulse generator
7 Air gun
8 Full closed protection

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China best Economic Cheap CNC Machining Center (China CNC Vertical Milling Machining Center Machine XH7126)     with high qualityChina best Economic Cheap CNC Machining Center (China CNC Vertical Milling Machining Center Machine XH7126)     with high quality

China Custom Vertical Machining Center CNC Milling Machine High Precision Vmc (XH7126) near me supplier

Product Description

FEATURES:

XH7126 is a multi-purpose machine which could mill surface & drill holes. This machine adopts domestic/overseas branded numerical control system and realizes full-screen edition in Chinese. Spindle adopts imported frequency converters, which could fulfill variable speed control & constant linear speed cutting functions; machining body adopts ultrasonic frequency hardening treatment; both X-axle & Z-axle adopts step/servo motor, which could process feeding motion by directly connecting shaft coupling & ball screws.

With high power, pleasant rigidity, high precision & storage, high price-quality ratio and long cycle life, the machine is widely applied to instruments, meters, light industries, electronics, home appliances, medical instruments, aeronautics & astronautics and etc. industries, it is 1 small-medium precision & complex machine for processing various materials (especially non-ferrous metals & stainless steel) as well as an ideal equipments for large automation production.

This machine could process holes below ∮16, milling plane below 18 and milling depth below 3mm.

1. X,Y,Z guideway adpot sliding guideway.

2. P5 class flange bearing.

3. ZheJiang tool magazine and linear guideway.

4. Coolant system uses large power pump, guarantee the sufficient lubrication while doing high speed machining.
 

Specification: XH7126
Main Motor Power KW 3.7KW
Spindle Max. Rotating Speed Servo Spindle 8000rpm
Z Motor Torque 7.7N.m
X Motor Torque 6N.m
Y Motor Torque 6N.m
Spindle Taper BT40
Worktable Size 800X260mm
Travel(Longitudinal X/Horizontal Y/Vertical Z) 450X320X450mm
Distance of Spindle Axis to Xihu (West Lake) Dis.way Plane 360mm
Distance of Spindle End to Worktable 90-510mm
The Vertical Permissible Error of Spindle Axis to Worktable Plane ≤0.02mm
Positioning Accuracy 0.02mm
Repeated Positioning Accuracy 0.01mm
Machine Overall Dimension (L*W*H) 2600*1950*2400mm
Machine Net Weight 2400kg
Magazine Capacity 12pcs

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China Custom Vertical Machining Center CNC Milling Machine High Precision Vmc (XH7126)     near me supplier China Custom Vertical Machining Center CNC Milling Machine High Precision Vmc (XH7126)     near me supplier

China high quality 12 Post Slotter 3 Axis Vertical Machine CNC Milling Machines with high quality

Product Description

 

 

3 Axis 4 Axis 5 Axis Vertical Precision Machining Metal VMC CNC Machine

Product Description

1. VMC850P 3-axis linear CZPT vertical machining center

Table size:1000*500 mm
Travel of X/Y/Z axis:800*500*600 mm
φ40*16 screw lead
HIWIN/PMI 45 ball linear guide
spindle BT40-150-8000
disc type magazine of 24 tools

2. VMC850A 3 linear guides vertical machining center

Table size 1000*500 mm
Travel of X/Y/Z axis 800*500*500 mm
φ36*16 screw lead
HIWIN/PMI 35 ball linear guide
spindle BT40-140-10000
disc type magazine of 24 tools

3. VMC850B 3 hard guideways vertical machining center

Table size 1000*500 mm
Travel of X/Y/Z axis 800*500*500 mm
φ40*10 screw lead
spindle BT40-150-8000
disc type magazine of 24 tools

CNC controller:

1. 2-4 axis control
2. 10.4″ color LCD screen
3. Supporting NCUC, etherCAT bus protocol
4. Supporting 16,000,000PPR high-precision encoder
5. Supporting TCP\IP, Ethernet communication protocols
6. Smart function:
7. Big data of CNC machine tool
8. Broken tool inspection
9. Temperature compensation

 

Product Parameters

VMC850 technical parameter

worktable

Worktable size

mm

1000*500

Worktable max.load

kg

600

T-slot (number*width*distance)

 

5-18*108

Travel

X-aixs travel

mm

800

Y-aixs travel

mm

500

Z-aixs travel

mm

500

Distance from spindle nose to table surface

mm

120-620

Distance from spindle center to column guideway

mm

581

Spindle

Spindle transmission type

 

Belt type

Spindle taper

 

BT 40 φ140

Spindle speed

rpm

8000

Spindle motor

kw

7.5

Feed Speed

X/Y/Z-aixs rapid feed

m/min

36\36\32

Cutting feed speed

mm/min

1-10000

Tool magazine

Tool number

pcs

24

Tools change way

 

Disc type ATC

Tool change time

s

2-3

Precision

Positioning precision

mm

±0.008

Reported positioning precision

mm

±0.005

other

controller

 

HuazhongCNC (HNC)

Overall size

mm

2700*2300*2300

Machine weight

kg

5000

 

VMC840 (3 axis hard railway) technical parameter

worktable

Worktable size

mm

1000*360

Worktable max.load

kg

300

T-slot (number*width*distance)

 

3-18*100

Travel

X-aixs travel

mm

800

Y-aixs travel

mm

400

Z-aixs travel

mm

550

Distance from spindle nose to table surface

mm

100-650

Distance from spindle center to column guideway

mm

445

Spindle

Spindle transmission type

 

Belt type

Spindle taper

 

BT 40 φ120

Spindle speed

rpm

8000

Spindle motor

kw

5.5

Feed Speed

X/Y/Z-aixs rapid feed

m/min

15\15\8

Cutting feed speed

mm/min

1-10000

Tool magazine

Tool number

pcs

16

Tools change way

 

Disc type ATC

Tool change time

s

2-3

Precision

Positioning precision

mm

±0.01

Reported positioning precision

mm

±0.008

other

controller

 

HuazhongCNC (HNC)

Overall size

mm

2500*2000*2100

Machine weight

kg

3200

 

 

 

Detailed Photos

 

Company Profile

HangZhou CZPT Numerical Control Co., Ltd. (HuazhongCNC or HNC) was established in 1994 with a registered capital of 172,79 million yuan. We are the 1st listed chinese company in CNC area with the Stock Code:300161

We are the first batch of national innovation enterprise, vice president unit of the Intelligent Manufacturing Branch of China Machinery Industry Federation, vice president unit of China Machine Tool Industry Association, director unit of the CNC System Association Branch, secretary general unit of the National Machine Tool CNC System Standard Council, director unit of High-End CNC System and Application Industry Technological Innovation Strategic Alliance (pilot). Nine of the products were rated as national key new products.

 

 

Types of Splines

There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
splineshaft

Involute splines

The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.

Parallel key splines

A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
splineshaft

Involute helical splines

Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.

Involute ball splines

When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
splineshaft

Keyed shafts

Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.

China high quality 12 Post Slotter 3 Axis Vertical Machine CNC Milling Machines     with high qualityChina high quality 12 Post Slotter 3 Axis Vertical Machine CNC Milling Machines     with high quality

China Custom 4 5 Axis CNC Milling Machine Manufacturer 7126 Vertical Machining Center Sp8126 near me manufacturer

Product Description

Product Description

SP8126 4 5 axis cnc milling machine manufacturer 7126 vertical machining center  NEW 3 4th VMC Vertical cnc metal milling machine center mini small CNC machining center with 800X260MM table Factory direct Sale High Precision Small VMC Vertical CNC Machining Center New Condition Automatic Smallest 4 Axis Vertical CNC Milling Center Machine SMC8450
(VMC from small to big size, the web pages are limited, so please contact us for more details)

As 1 new product of independent design & development, SMC8450 is a multi-purpose machine which could mill surface & drill holes. This machine adopts domestic/overseas branded numerical control system and realizes full-screen edition in Chinese. Spindle adopts imported frequency converters, which could fulfill variable speed control & constant linear speed cutting functions; machining body adopts ultrasonic frequency hardening treatment; both X-axle & Z-axle adopts step/servo motor, which could process feeding motion by directly connecting shaft coupling & ball screws.

With high power, pleasant rigidity, high precision & storage, high price-quality ratio and long cycle life, the machine is widely applied to instruments, meters, light industries, electronics, home appliances, medical instruments, aeronautics & astronautics and etc. industries, it is 1 small-medium precision & complex machine for processing various materials (especially non-ferrous metals & stainless steel) as well as an ideal equipments for large automation production.

This machine could process holes below ∮16, milling plane below 18 and milling depth below 3mm.

.

Product Parameters

Model SMC8450
Worktable Size 800X260mm
Travel(Longitudinal X/Horizontal Y/Vertical Z) 500X320X450mm
Main Motor Power   3.7KW
Spindle Max. Rotating Speed Servo Spindle 6000rpm (optional 8000rpm 10000rpm)
Z Motor Torque 7.7N.m
X Motor Torque 6N.m
Y Motor Torque 6N.m
Spindle Taper BT40
Distance of Spindle Axis to Xihu (West Lake) Dis.way Plane 360mm
Distance of Spindle End to Worktable 90-470mm
The Vertical Permissible Error of Spindle Axis to Worktable Plane ≤0.02mm
Positioning Accuracy 0.01mm
Repeated Positioning Accuracy 0.02mm
Machine Overall Dimension   2600*1950*2400mm
Net/Gross Weight 2200/2300kgs
Packing size 2270x1880x2500mm

Company Profile

As the professional and experienced manufacturer of lathe, mill , drill , cnc and other tools ,ZheJiang SUMORE Industrial Group has been in this filed for more than 20 years.

We have got the certificates of CE, GS ,Rohs , CSA ,UL ,etc . Also we have been in business with GSK ,Siemens ,Faunc and other famous companies within 50 countries all over the world.

Whether you need the standard or the customerised products , please contact us directly . Our professional and experienced engineers and after sale service team will meet your needs.

Hope to cooperate with you!

Types of Splines

There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
splineshaft

Involute splines

The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.

Parallel key splines

A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
splineshaft

Involute helical splines

Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.

Involute ball splines

When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
splineshaft

Keyed shafts

Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.

China Custom 4 5 Axis CNC Milling Machine Manufacturer 7126 Vertical Machining Center Sp8126     near me manufacturer China Custom 4 5 Axis CNC Milling Machine Manufacturer 7126 Vertical Machining Center Sp8126     near me manufacturer

China best Vertical Knee-Type Industrial Metal CNC Aluminum Milling Machine Vmc850 with Free Design Custom

Product Description

 

 

3 Axis 4 Axis 5 Axis Vertical Precision Machining Metal VMC CNC Machine

Product Description

1. VMC850P 3-axis linear CZPT vertical machining center

Table size:1000*500 mm
Travel of X/Y/Z axis:800*500*600 mm
φ40*16 screw lead
HIWIN/PMI 45 ball linear guide
spindle BT40-150-8000
disc type magazine of 24 tools

2. VMC850A 3 linear guides vertical machining center

Table size 1000*500 mm
Travel of X/Y/Z axis 800*500*500 mm
φ36*16 screw lead
HIWIN/PMI 35 ball linear guide
spindle BT40-140-10000
disc type magazine of 24 tools

3. VMC850B 3 hard guideways vertical machining center

Table size 1000*500 mm
Travel of X/Y/Z axis 800*500*500 mm
φ40*10 screw lead
spindle BT40-150-8000
disc type magazine of 24 tools

CNC controller:

1. 2-4 axis control
2. 10.4″ color LCD screen
3. Supporting NCUC, etherCAT bus protocol
4. Supporting 16,000,000PPR high-precision encoder
5. Supporting TCP\IP, Ethernet communication protocols
6. Smart function:
7. Big data of CNC machine tool
8. Broken tool inspection
9. Temperature compensation

 

Product Parameters

VMC850 technical parameter

worktable

Worktable size

mm

1000*500

Worktable max.load

kg

600

T-slot (number*width*distance)

 

5-18*108

Travel

X-aixs travel

mm

800

Y-aixs travel

mm

500

Z-aixs travel

mm

500

Distance from spindle nose to table surface

mm

120-620

Distance from spindle center to column guideway

mm

581

Spindle

Spindle transmission type

 

Belt type

Spindle taper

 

BT 40 φ140

Spindle speed

rpm

8000

Spindle motor

kw

7.5

Feed Speed

X/Y/Z-aixs rapid feed

m/min

36\36\32

Cutting feed speed

mm/min

1-10000

Tool magazine

Tool number

pcs

24

Tools change way

 

Disc type ATC

Tool change time

s

2-3

Precision

Positioning precision

mm

±0.008

Reported positioning precision

mm

±0.005

other

controller

 

HuazhongCNC (HNC)

Overall size

mm

2700*2300*2300

Machine weight

kg

5000

 

VMC840 (3 axis hard railway) technical parameter

worktable

Worktable size

mm

1000*360

Worktable max.load

kg

300

T-slot (number*width*distance)

 

3-18*100

Travel

X-aixs travel

mm

800

Y-aixs travel

mm

400

Z-aixs travel

mm

550

Distance from spindle nose to table surface

mm

100-650

Distance from spindle center to column guideway

mm

445

Spindle

Spindle transmission type

 

Belt type

Spindle taper

 

BT 40 φ120

Spindle speed

rpm

8000

Spindle motor

kw

5.5

Feed Speed

X/Y/Z-aixs rapid feed

m/min

15\15\8

Cutting feed speed

mm/min

1-10000

Tool magazine

Tool number

pcs

16

Tools change way

 

Disc type ATC

Tool change time

s

2-3

Precision

Positioning precision

mm

±0.01

Reported positioning precision

mm

±0.008

other

controller

 

HuazhongCNC (HNC)

Overall size

mm

2500*2000*2100

Machine weight

kg

3200

 

 

 

Detailed Photos

 

Company Profile

HangZhou CZPT Numerical Control Co., Ltd. (HuazhongCNC or HNC) was established in 1994 with a registered capital of 172,79 million yuan. We are the 1st listed chinese company in CNC area with the Stock Code:300161

We are the first batch of national innovation enterprise, vice president unit of the Intelligent Manufacturing Branch of China Machinery Industry Federation, vice president unit of China Machine Tool Industry Association, director unit of the CNC System Association Branch, secretary general unit of the National Machine Tool CNC System Standard Council, director unit of High-End CNC System and Application Industry Technological Innovation Strategic Alliance (pilot). Nine of the products were rated as national key new products.

 

 

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China best Vertical Knee-Type Industrial Metal CNC Aluminum Milling Machine Vmc850     with Free Design CustomChina best Vertical Knee-Type Industrial Metal CNC Aluminum Milling Machine Vmc850     with Free Design Custom