China supplier Rubber Roll Turning Grinding Lathe Machine for Grinding Rubber Roll Cylinder with Free Design Custom

Product Description

Large Heavy Duty Heavy Duty Roll Turning Grinding Horizontal cnc Lathe Machine
For Turning Roll,Cylinders, Long Shaft,Tire Mold, Railway Parts,Wheel Hub Turbine,Flange,etc

Heavy Duty Horizontal Lathe with Grinding Wheel is specially designed and manufactured by our company is a new design with national patent, which implements national latest standard of machine accuracy and integrates the multi-discipline and multi-category precision manufacturing technology such as electrical, automatic control, hydraulic control and modern mechanical design.

This is the patent certificate about our specially designed and manufactured CNC Lathe with Grinding Function. We also have the lathe with milling & drilling function.

The machine tool structure performance is suitable, the machine tool has high dynamic and static rigidity, long service life, high processing efficiency, reliable function, the operation is convenient and the modelling is beautiful and so on.

This machine is designed by mechatronics, and it has good flexibility. It can be used for turning all kinds of axles, large plane plates and rollers.The machine has large bearing capacity, strong rigidity, beautiful appearance, convenient operation and long service life.It is an ideal equipment for processing all kinds of shaft, large plane plate and roller parts.
 
Machine Introduction
 

  1. This kind of horizontal lathe machine with grinding function can utilize high-speed steel and carbide cutting tools to finish rough or finish turning process for not only the non-ferrous metals like various structure steels, casting steels and irons, but also the external/internal cylindrical / conical/ spherical surfaces  of non-metal materials and all kinds of the surface of curve rotary body. What’s more, it can also realize the constant speed cutting line. It is a professional lathe machine for turning rubber cylinder/rollers. That is an ideal option for rubber roller machining and very popular in the market.
  2. This machine adopts rectangular 4 heavy duty guide rails with high rigidity and stability. We adopts pasting plastic structure between sliding plate and machine bed guide. Besides, this CZPT rail is equipped with elescopic steel metal cover to prevent machining chips into the CZPT rail.
  3. The Main Transmission is driven by the DC variable frequency motor with mechanical 3 speeds to realize stepless speed range of spindle.
  4. The spindle adopts high precision double rows cylindrical roller bearings with adjustable radial clearance. Through optimized design, the larger spindle diameter and the best support span improve the rotation accuracy of spinlde and dynamtic and static strength.
  5. The horizontal structure of cutting tool carriage adopts ball screw, and the longitudinal adopts double teeth rod clearance structure to improve the transmission accuracy.
  6. The tailstock is a kind of overall box structure. The core shaft of sleeve adopts high precision double rows cylindrical roller bearings with adjustable radial clearance, so that the tailstock has high stiffness. The movement of tailstock and sleeve are electrical control with automatic clamping and release.
  7. According to customer’s special request, this kind of lathe can be installed double cutting tool carriages, milling and boring devices. Grinding wheel device,spindle inHangZhou and tool setting device

8. The main drive and feed transmission of this series heavy duty horizontal lathe adopts separate structures. This is a kind of heavy duty horizontal lathe with PLC system.

Our Principle : Maximize Customer’s Profitability under the minimum invest cost.

Application: This series CNC horizontal lathe can utilize high-speed steel and carbide cutting tools to finish rough or finish turning process for not only the non-ferrous metals like various structure steels, casting steels and irons, but also the external/internal cylindrical / conical/ spherical surfaces, thread of non-metal materials and all kinds of the surface of curve rotary body. What’s more, it can also realize the constant speed cutting line.

 
2. Technical Parameters of roll turning grinding lathe machine
 

Name CG61100 CG61125 CG61160 CG61200 CG61250 CG61300
Description   Unit
Max. Swing Over Bed mm 1000 1250 1600 2000 2500 3000
Max. Swing Over the skateboard mm 650 800 1200 1650 1800 2800
Max. Weight of Work-piece T 10 15 20 20 20 40
Max. Length of Work-piece mm 3000-12000
Gears of Spindle Speed / Infinitely Variable Speed/step-less speed
Range of Spindle Speed r/Min 10-300 10-200 10-160 4-80 4-80 1.6-63
Chuck Diameter mm 800 1000 1250 1600 2000 2500
X,Z-Axis Feed Range mm/Min 0-3000
Horizontal Stroke mm 500 625 800 1000 1250 1000
Longitudinal Stroke mm 3000-12000
Main Driving Motor Kw 11 22 45 75 75 75
Cutting Force (Carriage) Kn 4 6 20 40 40 60
Sleeve Diameter of Tailstock mm 180 180 290 290 290 480
Spindle Diameter of tailstock mm 125 125 160 160 160 240

Rermarks: 

1. The above 6 models of Heavy Duty Horizontal Lathe Machine are the standard configurations, we can also design and manufacture customized lathe machines according to the user’s workpiece features. It can be manual or CNC control, both are available. 

2. This series heavy duty horizontal Lathe has been exported to Norway, Thailand, Romania, Iran, Russia, Chile for machining railway parts, automobile parts, mining and metallurgy, shipping building, wind power and other machinery industry. 

3. Package and Shipment of heavy dutu roll turning grinding lathe machine
 

Anti-Rust Oil/ Anti-Corrosive Oil for the whole machine, then wrapping the protective film

Wooden Box Package, or vacumm package is also available according to customer’s special request. 

4. After-sale Service & Maintenance of heavy duty horizontal roll turning grinding lathe machine

1. We provide professional technical training for users’ operators and maintenance staff to enable them to properly use and operate the lathe and carry out normal maintenance.

2. Warranty period: One year after acceptance of the lathe.

3. In case of any quality problem found during operation, the factory will dispatch personnel to the user’s location within 48 hours (domestic users) & within 3 days (Foreign Customer) and the technical staff won’t leave before resolving the malfuntion.

4. The company will freely provide different electrical and mechanical parts for the purchased lathe timely within warranty period.

5. The company will provide lifetime guarantee for the consulting services in terms of application, maintenance, repair, renovation, etc of equipments.

For more details, please feel free to contact us. Thanks!

contact-info.html

Tag: Heavy duty horizontal lathe, roll turning grinding lathe machine, cnc grinding machine, cnc turning lathe, cnc lathe, lathe machine
 

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China supplier Rubber Roll Turning Grinding Lathe Machine for Grinding Rubber Roll Cylinder     with Free Design CustomChina supplier Rubber Roll Turning Grinding Lathe Machine for Grinding Rubber Roll Cylinder     with Free Design Custom