Tag Archives: china machine

China wholesaler Torsion Arm Trailer Axle Spindle 7500lb Forged for RV Boat a wheel and axle simple machine

Product Description

torsion arm trailer axle spindle 7500LB forged for RV Boat

item

value

Place of Origin

China  

Province

ZheJiang

Model Number

Customized Services

Process

Mainly Hot forging, Some parts with Cold forging ,die forging and Free forgin will be OK

Material

Carbon steel: CM490,A36,1045,1035 etc., Alloy steel: 40Cr, 20CrMnTi, 20CrNiMo, 42CrMo4 etc., Stainless steel, SS304,SS316 etc.

Weight

1kg – 120kg

Applicable Machining Process

CNC Machining/ Lathing/ Milling/ Turning/ Boring/ Drilling/ Tapping/ Broaching/Reaming etc.

Machining Tolerance

0.03mm-0.1mm

Applicable Finish Surface Treatment

Shot/sand blast, polishing, Surface passivation, Primer Painting , Powder coating, ED- Coating, Chromate Plating, zinc-plate, Dacromat coating, Finish Painting,

Testing equipment

Supersonic inspection machine, Supersonic flaw detecting machine , physics and chemical analysis.

MOQ of mass production

1000-5000pcs

Testing equipment

Optical Spectrum Analyzer,tensile testing machine,impact testing machine,fluorescent magnetic particle detector,hardness tester,ultrasonic flaw detector..etc.

Packing

Wooden cases or according to customers’ needs

1. who are we?
We are based in ZheJiang , China, start from 2571,sell to North America(10.00%),South America(10.00%),Southeast
Asia(10.00%),Africa(10.00%),Mid East(10.00%),Eastern Asia(10.00%),Central America(10.00%),Northern Europe(10.00%),South
Asia(10.00%),Domestic Market(10.00%). There are total about 11-50 people in our office.
2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;
3.what can you buy from us?
semi trailer axles,  air suspensions , chamber,wheel ,slack adjuster and other related items.
4. why should you buy from us not from other suppliers?
We have a trailer parts production more than 10 years the supply chain
5. what services can we provide?
Accepted Delivery Terms: FOB,CIF,EXW;
Accepted Payment Currency:USD,EUR,JPY,CAD,AUD,HKD,GBP,CNY,CHF;
Accepted Payment Type: T/T;
Language Spoken:English,Chinese
6.what is the certificate
At present, the company can undertake CCS, ABS, BV, GL and other certification products /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Condition: New
Application: Trailer
Certification: ASTM, CE, DIN, ISO
Material: Steel
Transport Package: Customized
Customization:
Available

|

Customized Request

axle spindle

What are the torque specifications for securing an axle spindle to the suspension components?

The torque specifications for securing an axle spindle to the suspension components can vary depending on the specific vehicle make, model, and year. It’s important to refer to the manufacturer’s documentation or service manual for the accurate torque specifications. Here is a detailed explanation:

When installing or reassembling an axle spindle, it’s crucial to tighten the fasteners to the recommended torque specifications. This ensures proper clamping force and prevents issues such as overtightening, undertightening, or uneven loading. The torque specifications typically include values for the spindle nut, caliper bolts, and other related fasteners.

Since torque specifications can differ among vehicle models and years, it’s best to consult the appropriate manufacturer’s documentation or service manual for the exact torque values. These resources provide detailed information specific to your vehicle, ensuring accurate and safe installation. The documentation may be available in print form from the vehicle manufacturer, or in digital form through online service portals or third-party publications.

When referring to torque specifications, it’s essential to consider the following factors:

  • Torque Units: Torque specifications are typically provided in either foot-pounds (ft-lbs) or Newton-meters (Nm). Ensure that you are using the correct unit of measurement to avoid errors.
  • Torque Sequence: In some cases, the manufacturer may specify a specific sequence for tightening the fasteners. This sequence ensures even distribution of clamping force and proper alignment of components. Refer to the manufacturer’s documentation for any specified torque sequences.
  • Thread Lubrication: Depending on the specific application, the manufacturer may recommend the use of a specific lubricant or thread-locking compound on the fasteners. Follow the manufacturer’s recommendations regarding lubrication to achieve accurate torque values.
  • Re-Torqueing: In certain cases, the manufacturer may recommend re-torquing the fasteners after a specific mileage or driving time. This is done to account for any settling or relaxation that may occur in the components. Check the manufacturer’s documentation for any re-torqueing instructions.

It’s worth emphasizing that using the correct torque specifications is crucial to ensure the integrity and safety of the axle spindle and related components. Incorrectly tightened fasteners can lead to issues such as wheel bearing damage, premature wear, or even component failure.

If you are unsure about the torque specifications or lack the necessary tools and expertise, it is recommended to have a qualified mechanic or technician perform the installation or reassembly. They have the knowledge and experience to ensure that the axle spindle is secured with the appropriate torque, following the manufacturer’s specifications.

In summary, the torque specifications for securing an axle spindle to the suspension components vary depending on the vehicle make, model, and year. It is essential to consult the manufacturer’s documentation or service manual for the accurate torque values, taking into account torque units, torque sequence, thread lubrication, and any re-torqueing instructions. When in doubt, seek professional assistance to ensure proper installation and safe operation of the axle spindle.

axle spindle

What is the role of grease and lubrication in maintaining a healthy axle spindle?

Grease and lubrication play a crucial role in maintaining a healthy axle spindle. The axle spindle is a vital component of a vehicle’s suspension system, and proper lubrication is essential to ensure its longevity and performance. Here’s why grease and lubrication are important:

  • 1. Friction Reduction: One of the primary functions of grease and lubrication is to reduce friction between moving parts. In the axle spindle, there are multiple points of contact where components rotate or slide. Applying grease minimizes friction and heat generation, which can lead to wear and damage if left unchecked.
  • 2. Wear Prevention: Grease forms a protective barrier between metal surfaces, preventing direct metal-to-metal contact. This helps prevent wear and damage to the axle spindle and associated components, such as wheel bearings and hubs.
  • 3. Corrosion Resistance: Grease serves as a protective layer against moisture and corrosive agents. The axle spindle is exposed to the elements, and moisture or road salt can lead to corrosion. Proper lubrication with grease creates a barrier that inhibits corrosion and extends the spindle’s lifespan.
  • 4. Temperature Regulation: Axle spindles can generate heat during operation. Lubrication helps dissipate this heat and maintain the spindle’s temperature within a safe range. Excessive heat can lead to premature component failure.
  • 5. Noise Reduction: Properly lubricated axle spindles result in smoother and quieter operation. Inadequate lubrication can cause squeaks, squeals, or other unwanted noises during vehicle operation.
  • 6. Enhanced Performance: Well-lubricated axle spindles contribute to the overall performance of the vehicle. They ensure that the wheels rotate freely, providing stability, control, and safe handling.
  • 7. Extended Lifespan: Regular maintenance and lubrication can significantly extend the lifespan of the axle spindle and its associated components. This reduces the need for costly replacements and repairs.

Proper lubrication involves selecting the right type of grease or lubricant for the application, as well as adhering to a maintenance schedule that includes cleaning, inspection, and re-greasing as needed. Maintaining a healthy axle spindle through lubrication is essential for the safety and reliability of a vehicle, whether it’s a passenger car, truck, or other heavy-duty vehicle.

axle spindle

What are the common signs of a worn or faulty axle spindle, and how can they be identified?

A worn or faulty axle spindle can exhibit several common signs that indicate potential issues. Here’s a detailed explanation:

Identifying a worn or faulty axle spindle requires careful observation of the vehicle’s behavior and performance. Here are some common signs that may indicate problems with the axle spindle:

  • Uneven Tire Wear: Excessive or uneven tire wear is often a sign of a worn or faulty axle spindle. Inspect the tires regularly and look for patterns of wear, such as excessive wear on the edges, scalloping, cupping, or feathering. Uneven tire wear suggests that the spindle is not properly supporting the wheel assembly or that the alignment is compromised.
  • Steering Instability: A worn or faulty axle spindle can cause steering instability. If you notice that the steering feels loose, imprecise, or requires constant correction while driving, it could be a sign of a problem with the spindle. Pay attention to any vibrations or shimmying sensations felt through the steering wheel, as these can also indicate issues with the axle spindle.
  • Pulling or Drifting: If the vehicle consistently pulls to one side or drifts off-center, it may be due to a worn or faulty axle spindle. This misalignment can cause uneven tire wear and affect the vehicle’s stability and handling. Keep an eye on the vehicle’s tendency to deviate from a straight path while driving on a level road.
  • Noise or Grinding: A worn or faulty axle spindle can produce unusual noises. Listen for any grinding, clicking, or humming sounds coming from the wheel area while driving, especially during turns. These noises may indicate worn or damaged bearings within the spindle assembly, which require immediate attention.
  • Excessive Play or Movement: Check for excessive play or movement in the wheel assembly by firmly gripping the tire at the 12 o’clock and 6 o’clock positions and attempting to rock it back and forth. Excessive play or movement can suggest a worn or loose axle spindle, which can compromise the vehicle’s stability and handling.

If you observe any of these signs, it is recommended to have the axle spindle inspected by a qualified mechanic or technician who can assess the condition of the spindle and perform the necessary repairs or replacement.

In addition to visual inspection and observation of the mentioned signs, specialized diagnostic tools may be used to further evaluate the condition of the axle spindle. These tools can measure wheel alignment, detect excessive play or movement, and identify any abnormalities in the spindle assembly.

Regular maintenance and periodic inspections of the suspension system can help in identifying early signs of axle spindle wear or faults. It’s important to address any issues promptly to prevent further damage and ensure the optimal performance and safety of the vehicle.

In summary, common signs of a worn or faulty axle spindle include uneven tire wear, steering instability, pulling or drifting, unusual noises, and excessive play or movement in the wheel assembly. Careful observation, visual inspection, and professional evaluation can help identify these signs and determine the condition of the axle spindle.

China wholesaler Torsion Arm Trailer Axle Spindle 7500lb Forged for RV Boat   a wheel and axle simple machineChina wholesaler Torsion Arm Trailer Axle Spindle 7500lb Forged for RV Boat   a wheel and axle simple machine
editor by CX 2024-04-12

China manufacturer Hot Product – 6 Hole Germany Type Axle Sale Dubai a wheel and axle simple machine

Product Description

hot product – 6 hole germany type axle sale dubai 
Jin Xihu (West Lake) Dis. semitrailer axle produced by the company, has reasonable structure, good braking quality, high-intensity, big rigidity, long life, as well as strong bearing capacity, and also passed the national authoritative department’s monitor: The fatigue life reaches 1.5 million times without damage, which surpasses national standard. At present, the annul productive ability of Jin Xihu (West Lake) Dis. semitrailer axle has surpassed 10 thousands, widespread using in domestic and overseas, and selling in distant markets in Malaysia, Germany, US, Ecuador and so on.

Products features:
1.Special heat-treat,low alloy steel axle beam,it has the vitues of good synthetic 
performance,strong loadabilityand lower self weight;
2.High quality alloy solid iserted spindle,through wholy heat treatment,provide
 superior fatigue capacity;
3.High performance premium non-asbstos brake linings,extend service life;
4.Easy for ABSinstallation;
5.Camshaft,maching with special seals,can ensure no entry of the grease into the brake 
drum,more safety;
6.New tight fit hub cap have O rings,high property for sealing;
7.Grease lubricant is supplied by Mobil that lengthens the time of free maintenance;

8.Full range of stud fixing such as ISO,BSF,and JAP,it can meet the requirements of various wheel rims.
We have 7 types of axles

  1. American type axles (Inboard type and outboard type )
  2. Germany type axles ( Wheel type and spider type )
  3. English type axles ( 8 holes, 10 holes / ISO BSF JAP )
  4. Lowbed axles / concave axles
  5. Agricultural axles ( With brake, Without brake, Stub axles )
  6. Steering axles

Type Germany Type Trailer Axle
Process Casting
Material Steel
Capacity 12T  14T 16T 
Track length 1840mm, 1850mm, 2040mm, 2050mm, as your requirement
Axle beam Round type and square type, 127mm/150mm
Package 1.use plastic film winding wheel hub
2.use metal plate fasten between axles 3.axles accessories in the wooden box or carbon boxes
Or according to customers’ requests
Delivery Two weeks after confirm the order 
MOQ 1 Piece
Payment L/C or 30% T/T prepaid, the balance against the copy of B/L
Certification ISO9001. TS16948
Product& Package Customization
Trial order or Sample Acception

Axle type Brake size Wheel fixing NO.size of wheel stud Wheel REG.DIA.(DIM B) DIM D Bearing Min wheel size Beam size Axle capacity Spring seat installation Weight
RND1218I 420×180 ISO 10xM22x335 281 711.5 33213  33118 8.0-20 ◊150 12t ≤450 370kg
RN1218J 420×180 JAP 8xM20x285 221 711.5 33213  33118 8.0-20 ◊150 12t ≤450 370kg
RND12220I 420×200 ISO 10xM22x335 281  721.5 33213  33118 8.0-20 ◊150 12t ≤450 397kg
RND1222I 420×220 ISO 10xM22x335 281  721.5 33213  33118 8.0-20 ◊150 12t ≤450 410kg

Q1:Are you a factory? 
A:Yes,we are a factory,but not just a factory,as we have sales team,our own offices,and they
all can help the buyers and cooperative partners to decide which products are the best choices
for them,and all your requirements and inquires will be replyed in time.  

Q2:What’s your Delivery Time?

A:In general, the delivery time is 15-20 days.We will make the delivery as soon as possible with
the guaranted quality.

Q3:What is the convenient way to pay?
A:L/C , T/T,Unionpay,DP are accepted,and if you have a better idea , please be free sharing with us.

Q4:Which type of shipping would be better?
A:Generally,in consideration of the cheap and safe superiorities of sea transportation,we advice
to make delivery by sea.What’s more, we respect your views of other transportation as well.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Axle Number: 1
Application: Trailer
Certification: ISO
Material: Steel
Type: Semi-Trailer
Customization:
Available

|

Customized Request

axle

What are the safety considerations when working with axles, especially during repairs?

Working with axles, especially during repairs, requires careful attention to safety to prevent accidents and injuries. Here are some important safety considerations to keep in mind when working with axles:

1. Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment, including safety goggles, gloves, and steel-toed boots. PPE helps protect against potential hazards such as flying debris, sharp edges, and accidental contact with heavy components.

2. Vehicle Stability:

Ensure that the vehicle is on a stable and level surface before working on the axles. Engage the parking brake and use wheel chocks to prevent unintended vehicle movement. The stability of the vehicle is crucial to maintain a safe working environment.

3. Lifting and Support:

Use proper lifting equipment, such as hydraulic jacks or vehicle lifts, to raise the vehicle safely. Follow the manufacturer’s guidelines for lifting points and weight capacities. Once the vehicle is lifted, support it securely with jack stands or other appropriate supports to prevent it from falling or shifting during repairs.

4. Lockout/Tagout:

If the repair work involves disconnecting or removing any electrical or mechanical components that could cause the axle or wheels to move, follow lockout/tagout procedures. This involves locking and tagging out the power source, so it cannot be accidentally energized while work is being performed.

5. Proper Tools and Equipment:

Use the correct tools and equipment for the job. Using improper tools or makeshift methods can lead to accidents and damage to the axle or surrounding components. Follow the manufacturer’s instructions and recommended procedures for disassembling, repairing, and reassembling the axle.

6. Proper Torque and Tightening:

When reassembling the axle components, use a torque wrench to ensure that fasteners are tightened to the manufacturer’s specifications. Over-tightening or under-tightening can lead to component failure or damage. Follow the recommended torque values provided by the vehicle manufacturer.

7. Safe Handling of Heavy Components:

Axle components can be heavy and cumbersome. Use appropriate lifting techniques and equipment, such as hoists or lifting straps, to safely handle heavy axle parts. Avoid lifting heavy components alone whenever possible and ask for assistance when needed.

8. Proper Disposal of Fluids and Waste:

If the repair involves draining fluids from the axle, such as differential oil, ensure proper disposal according to local regulations. Use appropriate containers to collect and store fluids and dispose of them at authorized collection points.

9. Training and Experience:

Working with axles requires knowledge and experience. If you are unfamiliar with axle repairs, consider seeking assistance from a qualified mechanic or technician who has the necessary training and expertise. If you decide to perform the repairs yourself, ensure that you have the appropriate knowledge and skills to carry out the task safely.

By following these safety considerations, you can help minimize the risk of accidents, injuries, and damage when working with axles, ensuring a safe working environment for yourself and others involved in the repair process.

axle

What is the difference between front and rear axles in a typical vehicle?

In a typical vehicle, there are distinct differences between the front and rear axles due to their respective roles and functions. Here are the key differences:

  1. Position:
  2. The main difference between the front and rear axles is their position in the vehicle. The front axle is located in the front of the vehicle, while the rear axle is positioned at the rear. This positioning is determined by the vehicle’s drivetrain configuration.

  3. Steering:
  4. The front axle is responsible for steering the vehicle. It is connected to the steering system, allowing the driver to control the direction of the vehicle. The front axle typically includes components such as steering knuckles, tie rods, and steering linkages.

  5. Driving:
  6. The rear axle is primarily responsible for driving the vehicle’s wheels. It receives power from the engine through the transmission or differential and transfers that power to the rear wheels. The rear axle may include components such as axle shafts, differential gears, and wheel hubs.

  7. Suspension:
  8. Both the front and rear axles play a role in the vehicle’s suspension system, but their configurations and functions differ. The front axle typically incorporates suspension components such as control arms, struts, or independent suspension systems to provide better handling, stability, and ride comfort. The rear axle may have a solid axle setup or independent suspension depending on the vehicle’s design.

  9. Load Distribution:
  10. The load distribution on the front and rear axles varies. In a typical vehicle, the front axle carries the weight of the engine, transmission, and a portion of the vehicle’s weight due to the front-end weight bias. The rear axle bears the weight of the vehicle’s occupants, cargo, and a portion of the vehicle’s weight. This distribution helps maintain proper balance and stability during acceleration, braking, and cornering.

  11. Driving Characteristics:
  12. The differences between the front and rear axles can influence the vehicle’s driving characteristics. The front axle’s role in steering affects the vehicle’s maneuverability and responsiveness. The rear axle’s responsibility for driving the wheels affects traction, acceleration, and stability, particularly in rear-wheel drive or four-wheel drive vehicles.

It’s important to note that the specific configurations and characteristics of front and rear axles can vary depending on the vehicle’s make, model, and drivetrain system. Different types of vehicles, such as front-wheel drive, rear-wheel drive, or all-wheel drive, may have variations in axle design and functionality.

Understanding the differences between the front and rear axles is essential for proper maintenance, repairs, and modifications of the vehicle’s drivetrain and suspension systems. If you have specific questions about your vehicle’s axles, it’s recommended to consult your vehicle’s owner’s manual or seek advice from qualified mechanics or automotive professionals.

axle

What is the primary function of an axle in a vehicle or machinery?

An axle plays a vital role in both vehicles and machinery, providing essential functions for their operation. The primary function of an axle is to transmit rotational motion and torque from an engine or power source to the wheels or other rotating components. Here are the key functions of an axle:

  1. Power Transmission:
  2. An axle serves as a mechanical link between the engine or power source and the wheels or driven components. It transfers rotational motion and torque generated by the engine to the wheels, enabling the vehicle or machinery to move. As the engine rotates the axle, the rotational force is transmitted to the wheels, propelling the vehicle forward or driving the machinery’s various components.

  3. Support and Load Bearing:
  4. An axle provides structural support and load-bearing capability, especially in vehicles. It bears the weight of the vehicle or machinery and distributes it evenly across the wheels or supporting components. This load-bearing function ensures stability, balance, and proper weight distribution, contributing to safe and efficient operation.

  5. Wheel and Component Alignment:
  6. The axle helps maintain proper alignment of the wheels or rotating components. It ensures that the wheels are parallel to each other and perpendicular to the ground, promoting stability and optimal tire contact with the road surface. In machinery, the axle aligns and supports the rotating components, ensuring their correct positioning and enabling smooth and efficient operation.

  7. Suspension and Absorption of Shocks:
  8. In vehicles, particularly those with independent suspension systems, the axle plays a role in the suspension system’s operation. It may incorporate features such as differential gears, CV joints, or other mechanisms that allow the wheels to move independently while maintaining power transfer. The axle also contributes to absorbing shocks and vibrations caused by road irregularities, enhancing ride comfort and vehicle handling.

  9. Steering Control:
  10. In some vehicles, such as trucks or buses, the front axle also serves as a steering axle. It connects to the steering mechanism, allowing the driver to control the direction of the vehicle. By turning the axle, the driver can steer the wheels, enabling precise maneuverability and navigation.

  11. Braking:
  12. An axle often integrates braking components, such as brake discs, calipers, or drums. These braking mechanisms are actuated when the driver applies the brakes, creating friction against the rotating axle or wheels and causing deceleration or stopping of the vehicle. The axle’s design can affect braking performance, ensuring effective and reliable stopping power.

Overall, the primary function of an axle in both vehicles and machinery is to transmit rotational motion, torque, and power from the engine or power source to the wheels or rotating components. Additionally, it provides support, load-bearing capability, alignment, suspension, steering control, and braking functions, depending on the specific application and design requirements.

China manufacturer Hot Product - 6 Hole Germany Type Axle Sale Dubai   a wheel and axle simple machineChina manufacturer Hot Product - 6 Hole Germany Type Axle Sale Dubai   a wheel and axle simple machine
editor by CX 2024-04-04

China manufacturer High Quality Heavy Duty Lowboy Lowbed Trailer Transport Heavy Machine Low Bed Truck Semi Trailer boat trailer axle

Product Description

Low Bed Semi Trailer, as known as low bed trailer, lowbed trailer, lowboy trailerOur lowbed trailer choose Q345B carbon high-10sile steel material. We adoptworld famous brand of parts, like JOST, CZPT braking valve etc.
The product complies with international standards such as lMDG /ADR /RIDITC/CSC/ ASME / EN, and is applicable to the global shipping, road and railtransportation regulations and standards.

Our Advantages

Why Choose Us

Factory Direct, No Middle Man, No Agency Fees, Therefore Low Price For High Quality Only From Us. Directly Manufactured From Our Own Factory, Can Be Customized For Various Needs Cutting Edge Automation Equipment Adopted In The Factory, Improved Quality From Traditional Production Methods Light Weight Of The Whole Vehicle, Guaranteed Anti Distortion, Anti-seismic And Anti Bumping Steel Welded By Automatic Submerged Arc Process, Connection Spots Look Flawless, More Solid And Durable Compared With Traditional Manual Ways. Cover Painting Is More Sustainable, Corrosion-resistant, Uniform And Smooth, Using Sand Blasting Powder Painting Process

Product Description

Detailed Photos

Product Parameters

4 line 8 axles LOWBED SEMI TRAILER

Model Number

WHLDM-1015008

Outside Dimensions

13500x2500x1500 (mm) (LxWxH) (Other Dimension Optional)

Rated Load

90-120T

Tare Weight

9900 kg

Usage

For heavy duty machine, as transformer, crane, excavator transportation.

Wheel Base

8310+13101310 (mm)

Axle Brand

13t X CZPT Brand

No. Of the Axles

8

Tyre Specifications

10.00R20

No. Of the Tyres

32 pcs , Triangle brand

Pieces of leaf-spring

10pcs *90 *16mm

Suspension

Heavy Duty Leaf Spring

Front/Rear Overhang

1950 mm

Floor

3mm management plate

Tool Box

1 box of standard tools

Spare tire carrier

2 sets

Main Beam Material

Q345B/ST52-3 manganese plates, automatic submerged arc,

Main-beam Height 500mm,

Lower flange: 20mm

Upper flange: 20mm

Mid Web: 12mm

Brake Air Chamber

Four double and 2 single chamber

The traction pin

2′ & 3.5′ inter-changeable

Pin Height

According to the height of the tractor saddle.

Electrical System

24V, 7core socket, lights according to European standards.

Brake System

Dual Lines Braking System With Automatic Air Chambers

Color and Logo

Depends on the buyer’s requirement.

Place of Origin

Xihu (West Lake) Dis., China

Company Profile

Xihu (West Lake) Dis. Xinrun Trading Co., Ltd. is an integrated enterprise of industry and trade, established in 2571, located in Xihu (West Lake) Dis. County, HangZhou City, ZheJiang Province. The company is mainly engaged in the import and export of trailer accessories such as trailers, semi-trailers, dump trailers, axles, chemical equipment, and other goods, automobile sales, retail of automobile parts, second-hand car brokerage, mechanical equipment sales, and metal material sales; Selling construction machinery and retail hardware products; Special equipment sales; Wholesale of hardware products; Motor vehicle repair and maintenance; Tire sales; Sales of pharmaceutical specific equipment. The company values professionalism, integrity, and trustworthiness as its core values. Looking forward to cooperating with you!
                                                      Production Process

 

Packaging & Shipping

FAQ

Q1: Does your company is a factory or trade company? 
A1: We have a factory ourself,we are on this business for few years in China. Our factory is very famous in the ZheJiang China. 

Q2: Whats the qualify assurance we provided and how do we control quality?
A2: Established a procedure to check products at all stages of the manufacturing process-raw materials,process materials,validated or tested materials finished goods ect. Beside,we have also developed a procedure which identifies the inspection and test status of all items at all stages of the manufacturing process. 100% inspection in assembly lines. All controls, inspections,equipment,fixtures,total production resources and skills are inspected to ensure they consistently achieve the required quality levels.

Q3: What’s your MOQ?
A3: One unit trailer or truck. 

Q4: How do you transport the semi trailers ?
A4: We transport the vehicle by bulk or container. Our factory possess long -term cooperation with ship agency which can provide you lowest shipping fee.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Years
Warranty: One Years
Type: Semi-Trailer
Load Capacity: 50T
Certification: ISO9001, CCC, ISO/TS16949
Wheel Base: 8000-9000mm
Samples:
US$ 5800/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

Can you provide insights into the maintenance of axle bearings for smooth operation?

Maintaining axle bearings is essential for ensuring smooth operation, longevity, and optimal performance of a vehicle’s axle system. Here are some insights into the maintenance of axle bearings:

1. Regular Inspection:

Perform regular visual inspections of the axle bearings to check for any signs of wear, damage, or leaks. Look for indications such as excessive play, unusual noises, vibration, or leakage of grease. Inspections should be carried out as per the manufacturer’s recommended intervals or during routine maintenance checks.

2. Lubrication:

Adequate lubrication is crucial for the smooth operation of axle bearings. Follow the manufacturer’s guidelines for the type of lubricant to use and the recommended intervals for greasing. Over-greasing or under-greasing can lead to bearing damage or failure. Ensure that the proper amount of grease is applied to the bearings, and use a high-quality grease that is compatible with the axle bearing specifications.

3. Seal Inspection and Replacement:

Check the condition of the axle bearing seals regularly. The seals help to keep contaminants out and retain the lubricating grease within the bearing. If the seals are damaged, worn, or show signs of leakage, they should be replaced promptly to prevent dirt, water, or debris from entering the bearing assembly and causing damage.

4. Proper Installation:

During axle bearing replacement or installation, it is crucial to follow proper procedures to ensure correct seating and alignment. Improper installation can lead to premature bearing failure and other issues. Refer to the manufacturer’s instructions or consult a professional mechanic to ensure proper installation techniques are followed.

5. Load Capacity and Alignment:

Ensure that the axle bearings are properly sized and rated to handle the load capacity of the vehicle and the specific application. Overloading the bearings can lead to excessive wear and premature failure. Additionally, proper wheel alignment is important to prevent uneven bearing wear. Regularly check and adjust the wheel alignment if necessary.

6. Environmental Considerations:

Take into account the operating conditions and environment in which the vehicle is used. Extreme temperatures, exposure to water, dirt, or corrosive substances can affect the performance of axle bearings. In such cases, additional preventive measures may be necessary, such as more frequent inspections, cleaning, and lubrication.

7. Professional Maintenance:

If you are unsure about performing maintenance on axle bearings yourself or if you encounter complex issues, it is recommended to seek assistance from a qualified mechanic or technician who has experience with axle systems. They can provide expert advice, perform necessary repairs or replacements, and ensure proper maintenance of the axle bearings.

By following these maintenance insights, you can help ensure the smooth operation, longevity, and reliability of axle bearings, contributing to the overall performance and safety of the vehicle.

axle

How do axle ratios impact the performance and fuel efficiency of a vehicle?

The axle ratio of a vehicle plays a crucial role in determining its performance characteristics and fuel efficiency. Here’s a detailed explanation of how axle ratios impact these aspects:

Performance:

The axle ratio refers to the ratio of the number of rotations the driveshaft makes to the number of rotations the axle makes. A lower axle ratio, such as 3.23:1, means the driveshaft rotates 3.23 times for every rotation of the axle, while a higher ratio, like 4.10:1, indicates more driveshaft rotations per axle rotation.

A lower axle ratio, also known as a numerically higher ratio, provides better low-end torque and acceleration. This is because the engine’s power is multiplied as it goes through the gears, resulting in quicker acceleration from a standstill or at lower speeds. Vehicles with lower axle ratios are commonly found in trucks and performance-oriented vehicles where quick acceleration and towing capacity are desired.

On the other hand, a higher axle ratio, or numerically lower ratio, sacrifices some of the low-end torque for higher top-end speed and fuel efficiency. Vehicles with higher axle ratios are typically used in highway driving scenarios where maintaining higher speeds and maximizing fuel efficiency are prioritized.

Fuel Efficiency:

The axle ratio directly affects the engine’s RPM (revolutions per minute) at a given vehicle speed. A lower axle ratio keeps the engine running at higher RPMs, which may result in increased fuel consumption. However, this ratio can provide better towing capabilities and improved off-the-line acceleration.

In contrast, a higher axle ratio allows the engine to operate at lower RPMs during cruising speeds. This can lead to improved fuel efficiency because the engine doesn’t have to work as hard to maintain the desired speed. It’s worth noting that other factors, such as engine efficiency, aerodynamics, and vehicle weight, also influence fuel efficiency.

Manufacturers carefully select the axle ratio based on the vehicle’s intended purpose and desired performance characteristics. Some vehicles may offer multiple axle ratio options to cater to different driving preferences and requirements.

It’s important to consider that changing the axle ratio can have implications on the overall drivetrain system. Modifying the axle ratio can affect the vehicle’s speedometer accuracy, transmission shifting points, and may require recalibration of the engine control unit (ECU) to maintain optimal performance.

As always, for precise information on a specific vehicle’s axle ratio and its impact on performance and fuel efficiency, it is best to consult the vehicle manufacturer’s specifications or consult with automotive experts.

axle

Can you explain the importance of axle alignment for vehicle stability and handling?

Axle alignment plays a crucial role in ensuring vehicle stability and handling characteristics. Proper alignment of the axles is essential for maintaining optimal tire contact with the road surface, minimizing tire wear, maximizing traction, and promoting safe and predictable handling. Here are the key reasons why axle alignment is important:

  1. Tire Wear and Longevity:
  2. Correct axle alignment helps distribute the vehicle’s weight evenly across all four tires. When the axles are properly aligned, the tires wear evenly, reducing the risk of premature tire wear and extending their lifespan. Misaligned axles can cause uneven tire wear patterns, such as excessive wear on the inner or outer edges of the tires, leading to the need for premature tire replacement.

  3. Optimal Traction:
  4. Proper axle alignment ensures that the tires maintain optimal contact with the road surface. When the axles are aligned correctly, the tires can evenly distribute the driving forces, maximizing traction and grip. This is particularly important during acceleration, braking, and cornering, as proper alignment helps prevent tire slippage and improves overall vehicle stability.

  5. Steering Response and Stability:
  6. Axle alignment directly affects steering response and stability. When the axles are properly aligned, the vehicle responds predictably to driver inputs, providing precise and accurate steering control. Misaligned axles can lead to steering inconsistencies, such as pulling to one side or requiring constant correction, compromising vehicle stability and handling.

  7. Reduced Rolling Resistance:
  8. Proper axle alignment helps reduce rolling resistance, which is the force required to move the vehicle forward. When the axles are aligned correctly, the tires roll smoothly and effortlessly, minimizing energy loss due to friction. This can contribute to improved fuel efficiency and reduced operating costs.

  9. Vehicle Safety:
  10. Correct axle alignment is crucial for ensuring vehicle safety. Misaligned axles can affect the vehicle’s stability, especially during emergency maneuvers or sudden lane changes. Proper alignment helps maintain the intended handling characteristics of the vehicle, reducing the risk of loss of control and improving overall safety.

To achieve proper axle alignment, several key parameters are considered, including camber, toe, and caster angles. Camber refers to the vertical tilt of the wheel when viewed from the front, toe refers to the angle of the wheels in relation to each other when viewed from above, and caster refers to the angle of the steering axis in relation to vertical when viewed from the side. These alignment angles are adjusted to meet the vehicle manufacturer’s specifications and ensure optimal performance.

It’s important to note that factors such as road conditions, driving habits, and vehicle modifications can affect axle alignment over time. Regular maintenance and periodic alignment checks are recommended to ensure that the axles remain properly aligned, promoting vehicle stability, handling, and safety.

China manufacturer High Quality Heavy Duty Lowboy Lowbed Trailer Transport Heavy Machine Low Bed Truck Semi Trailer   boat trailer axleChina manufacturer High Quality Heavy Duty Lowboy Lowbed Trailer Transport Heavy Machine Low Bed Truck Semi Trailer   boat trailer axle
editor by CX 2024-04-04

China supplier Type BPW Trailer Axle for Semi Trailer Parts a wheel and axle simple machine

Product Description

18Ton 1850MM German Type Square Beam Rear Semi Trailer Axles for Sale

Product Parameters

 

 

Axle Type

 

Max  

Capacity

(T)

L2

Track

(mm)

 Brake ( mm )

 

Bearing

Spring Seat

Installation

 

Axle

 

L4Centre Distanceof Brake Chamber

( mm)

 

JS12FA1347D

12

1840

φ420x 180

33118

33213

≥980

150

423

JS13FA1348D

13

1840

φ 420x 200

33118

33213

 

≥900

150

360

JS14FA1348D

14

1840

φ 420x 200

32219

33215

≥900

150

356

JS16FA1348D

16

1850

φ 420x 200

322222

32314

≥900

150

360

JS18FA1348D

18

1850

Φ420x 200

322222

32314

≥900

150

380

Wheel Fixing

 

Total Length ( mm )

 

Recommended

Wheel

 

Weigth(Kg)

 

Stud

 

PCD(mm)

H(mm)

10-M22x 1.5ISO

335

280.8

~ 2144

7.5v-20

360

10-M22x 1.5ISO

335

280.8

~ 2144

7.5v-20

382

10-M22x 1.5ISO

335

280.8

~ 2198

8.0v-20

406

10-M22x 1.5ISO

335

280.8

~ 2265

8.5v-20

440

10-M22x 1.5ISO

335

280.8

~ 2265

8.5v-20

443

Detailed Photos

 

 

Application

 

 

Company Profile

 

ZheJiang CZPT Axle Manufacturing Co., Ltd., founded in 2000, is a professional manufacturer of trailer axle assemblies, semi-trailer suspension systems and correlative fittings in China. We are located in Quanpu Industry Zone which is the largest production base of trailers in China, in Xihu (West Lake) Dis., the famous scenic spot. We are 1 of specialized enterprises in the scientific research, design, production and sale, with more than 300 skilled employees and professional designers for different areas. We adopt the domestic and international technical standards in production, accurately grasp the information of the market demand and make quick and optimal designs. In this way, our axle, suspension and other fittings have the world-class technical quality through reasonable and advanced manufacture technologies. Our advanced processing technology, first-class production line and precision CNC machining equipment from home and abroad ensure the good quality of our semi-trailer axle assemblies, suspension systems and other correlative fittings. At the same time, our annual capacity for the export of American and German semi-trailer axle assemblies has achieved 60, 000 pieces and of suspension assemblies has achieved 50, 000 sets. We obtained the ISO9001: 2000 International Quality Management System Certification in 2003 and TS16949 Certification in 2007. “First-class product quality, the meticulous and thoughtful service, and CZPT cooperation” is the philosophy that we always cherish. We not only meet the domestic market demand, but also export our products to Southeast Asia, the Middle East, Latin America and other countries, enjoying a good reputation. We always regard quality as life, and client as God. We will create a brilliant tomorrow with your sincere cooperation and support.

Certifications

 

Packaging & Shipping

FAQ

 

1. What’s your advantage?

    

 — We are manufacturer, we own professinal technology & quality control team; excellent team for foreign trade plus a rich expertise in trading.

 

2.Where your export to?
— Our export to America, Netherlands, Germany, Italy, Poland, Hungary, Russia, and other European, Asia and Africa countries.

 

 

3. Can you send me samples for testing?

 

  — Certainly!  We’d like to provide the samples free of charge, but for the freight, pls kindly bear it.

 

4.Can you supply OEM ?

  — Sure, we always supply customized seveices according to customers’ drawing or samples.

 

 

5. How long do you finish a new product?

 

  — Usually 20~35days once all information confirmed.

 

Remark:

    Our payment terms

— 30% by T/T in advance, 70% by T/T before shipment

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Online
Condition: New
Axle Number: 1
Application: Trailer
Certification: CE, ISO
Material: Iron
Samples:
US$ 520/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

What are the key differences between live axles and dead axles in vehicle design?

In vehicle design, live axles and dead axles are two different types of axle configurations with distinct characteristics and functions. Here’s a detailed explanation of the key differences between live axles and dead axles:

Live Axles:

A live axle, also known as a solid axle or beam axle, is a type of axle where the wheels on both ends of the axle are connected and rotate together as a single unit. Here are the key features and characteristics of live axles:

  1. Connected Wheel Movement: In a live axle configuration, the wheels on both ends of the axle are linked together, meaning that any movement or forces applied to one wheel will directly affect the other wheel. This connection provides equal power distribution and torque to both wheels, making it suitable for off-road and heavy-duty applications where maximum traction is required.
  2. Simple Design: Live axles have a relatively simple design, consisting of a solid beam that connects the wheels. This simplicity makes them durable and capable of withstanding heavy loads and rough terrains.
  3. Weight and Cost: Live axles tend to be heavier and bulkier compared to other axle configurations, which can impact the overall weight and fuel efficiency of the vehicle. Additionally, the manufacturing and maintenance costs of live axles can be lower due to their simpler design.
  4. Suspension: In most cases, live axles are used in conjunction with leaf spring or coil spring suspensions. The axle is typically mounted to the vehicle’s chassis using leaf springs or control arms, allowing the axle to move vertically to absorb bumps and provide a smoother ride.
  5. Off-road Capability: Live axles are commonly used in off-road vehicles, trucks, and heavy-duty applications due to their robustness, durability, and ability to deliver power to both wheels simultaneously, enhancing traction and off-road performance.

Dead Axles:

A dead axle, also known as a dummy axle or non-driven axle, is a type of axle that does not transmit power to the wheels. It is primarily used to provide support and stability to the vehicle. Here are the key features and characteristics of dead axles:

  1. Independent Wheel Movement: In a dead axle configuration, each wheel operates independently, meaning that the movement or forces applied to one wheel will not affect the other wheel. Each wheel is responsible for its own power delivery and traction.
  2. Weight Distribution: Dead axles are often used to distribute the weight of the vehicle more evenly, especially in cases where heavy loads need to be carried. By adding an extra axle without driving capability, the weight can be distributed over a larger area, reducing the load on other axles and improving stability.
  3. Steering: Dead axles are commonly used as front axles in vehicles with rear-wheel drive configurations. They provide support for the front wheels and allow for steering control. The steering is typically achieved through a separate mechanism, such as a steering linkage or a steering gear.
  4. Reduced Complexity: Dead axles are simpler in design compared to live axles since they do not have the additional components required for power transmission. This simplicity can lead to lower manufacturing and maintenance costs.
  5. Efficiency and Maneuverability: Dead axles are often used in vehicles where power delivery to all wheels is not necessary, such as trailers, certain types of buses, and some light-duty vehicles. By eliminating the power transmission components, these vehicles can achieve better fuel efficiency and improved maneuverability.

It’s important to note that the choice between live axles and dead axles depends on the specific application, vehicle type, and desired performance characteristics. Vehicle manufacturers consider factors such as load capacity, traction requirements, off-road capability, cost, and fuel efficiency when determining the appropriate axle configuration for a particular vehicle model.

axle

Where can I purchase high-quality replacement axles for my make and model of vehicle?

When it comes to purchasing high-quality replacement axles for your specific make and model of vehicle, there are several reliable sources you can consider. Here are some options:

  1. Authorized Dealerships:
  2. Authorized dealerships of your vehicle’s manufacturer are a trustworthy option for purchasing replacement axles. They offer genuine parts that are specifically designed and engineered for your make and model. Contact your local dealership’s parts department to inquire about the availability of replacement axles.

  3. Independent Auto Parts Stores:
  4. Independent auto parts stores often carry a wide range of replacement axles from reputable manufacturers. These stores typically have knowledgeable staff who can help you identify the correct axle for your vehicle. Examples of popular auto parts stores include AutoZone, Advance Auto Parts, and O’Reilly Auto Parts.

  5. Online Retailers:
  6. Online retailers provide a convenient way to browse and purchase replacement axles from the comfort of your home. Websites such as Amazon, eBay, and RockAuto offer extensive selections of axles for various vehicle makes and models. Be sure to verify the compatibility of the axles with your specific vehicle before making a purchase.

  7. Specialty Performance Retailers:
  8. If you are looking for high-performance or upgraded axles, specialty performance retailers may be the way to go. These retailers cater to enthusiasts and offer axles that are designed to handle increased power, torque, or off-road demands. Examples of specialty performance retailers include Summit Racing, Jegs, and 4 Wheel Parts.

  9. Local Salvage Yards:
  10. Salvage yards, also known as junkyards or auto recyclers, can be a cost-effective option for finding used axles in good condition. Some salvage yards have an inventory system that allows you to search for specific parts based on your vehicle’s make and model. It’s important to thoroughly inspect used axles before purchase to ensure they meet your requirements.

  11. Vehicle Manufacturer’s Online Parts Store:
  12. Many vehicle manufacturers have their own online parts stores where you can directly purchase genuine replacement parts, including axles. These online stores provide the assurance of authenticity and compatibility with your specific make and model. Visit the official website of your vehicle’s manufacturer and look for their parts store section.

When purchasing replacement axles, it’s important to prioritize quality and ensure that the parts meet or exceed the original equipment specifications. Consider factors such as warranty coverage, customer reviews, and the reputation of the manufacturer or retailer. Additionally, consult with knowledgeable professionals or refer to your vehicle’s owner’s manual for specific axle specifications and recommendations.

axle

What are the factors to consider when choosing an axle for a custom-built vehicle?

Choosing the right axle for a custom-built vehicle is crucial for ensuring optimal performance, durability, and safety. Here are several key factors to consider when selecting an axle for a custom-built vehicle:

  1. Vehicle Type and Intended Use:
  2. Consider the type of vehicle you are building and its intended use. Factors such as vehicle weight, power output, terrain (on-road or off-road), towing capacity, and payload requirements will influence the axle selection. Off-road vehicles may require axles with higher strength and durability, while performance-oriented vehicles may benefit from axles that can handle increased power and torque.

  3. Axle Type:
  4. Choose the appropriate axle type based on your vehicle’s drivetrain configuration. Common axle types include solid axles (live axles) and independent axles. Solid axles are often used in heavy-duty applications and off-road vehicles due to their robustness and ability to handle high loads. Independent axles offer improved ride quality and handling characteristics but may have lower load-carrying capacities.

  5. Weight Capacity:
  6. Determine the required weight capacity of the axle based on the vehicle’s weight and intended payload. It’s crucial to select an axle that can handle the anticipated loads without exceeding its weight rating. Consider factors such as cargo, passengers, and accessories that may contribute to the overall weight.

  7. Axle Ratio:
  8. Choose an axle ratio that matches your vehicle’s powertrain and desired performance characteristics. The axle ratio affects the torque multiplication between the engine and wheels, influencing acceleration, towing capability, and fuel efficiency. Higher axle ratios provide more torque multiplication for improved low-end power but may sacrifice top-end speed.

  9. Braking System Compatibility:
  10. Ensure that the chosen axle is compatible with your vehicle’s braking system. Consider factors such as the axle’s mounting provisions for brake calipers, rotor size compatibility, and the need for an anti-lock braking system (ABS) if required.

  11. Suspension Compatibility:
  12. Consider the compatibility of the chosen axle with your vehicle’s suspension system. Factors such as axle mounting points, suspension geometry, and overall ride height should be taken into account. Ensure that the axle can be properly integrated with your chosen suspension components and that it provides sufficient ground clearance for your specific application.

  13. Aftermarket Support:
  14. Consider the availability of aftermarket support for the chosen axle. This includes access to replacement parts, upgrade options, and technical expertise. A robust aftermarket support network can be beneficial for future maintenance, repairs, and customization needs.

  15. Budget:
  16. Set a realistic budget for the axle selection, keeping in mind that high-performance or specialized axles may come at a higher cost. Balance your requirements with your budget to find the best axle option that meets your needs without exceeding your financial limitations.

When choosing an axle for a custom-built vehicle, it’s recommended to consult with knowledgeable professionals, experienced builders, or reputable axle manufacturers. They can provide valuable guidance, assist in understanding technical specifications, and help you select the most suitable axle for your specific custom vehicle project.

China supplier Type BPW Trailer Axle for Semi Trailer Parts   a wheel and axle simple machineChina supplier Type BPW Trailer Axle for Semi Trailer Parts   a wheel and axle simple machine
editor by CX 2024-04-02

China Professional 13t 16t American Type Heavy Duty Axle for Semi Trailer a wheel and axle simple machine

Product Description

Trailer parts American type 16t semi trailer axle

Axle-Inboard Drum Series Specifications
Axle Type Max.
Capacity(T)
Track
(mm)
Brake(mm) Bearing (Spring Seat
Installation)
Axle Beam
(mm)
Centre Distance
Of Brake
Chamber(mm)
Wheel Fixing Total Length
(mm)
Recommended
Wheel
Axle
Weight
(kg)
Stud P.C.D(mm) H(mm)
JSS13F1B10 13 2420 φ420×180 HM518445/10 ≥ 1510 150
 
787
 
10×M22×1.5 ISO
 
335
 
280.8
 
~ 2526
 
7.5V-20
 
380
 

Note:
1. Track length L2 is optional
2. Available with ABS system 
3. Automatic slack adjuster is optional 

ZheJiang CZPT Axle Manufacturing Co., Ltd., founded in 2000, is a professional manufacturer of trailer axle assemblies, semi-trailer suspension systems and correlative fittings in China. We are located in Quanpu Industry Zone which is the largest production base of trailers in China, in Xihu (West Lake) Dis., the famous scenic spot. We are 1 of specialized enterprises in the scientific research, design, production and sale, with more than 300 skilled employees and professional designers for different areas. We adopt the domestic and international technical standards in production, accurately grasp the information of the market demand and make quick and optimal designs. In this way, our axle, suspension and other fittings have the world-class technical quality through reasonable and advanced manufacture technologies. Our advanced processing technology, first-class production line and precision CNC machining equipment from home and abroad ensure the good quality of our semi-trailer axle assemblies, suspension systems and other correlative fittings. At the same time, our annual capacity for the export of American and German semi-trailer axle assemblies has achieved 60, 000 pieces and of suspension assemblies has achieved 50, 000 sets. We obtained the ISO9001: 2000 International Quality Management System Certification in 2003 and TS16949 Certification in 2007. “First-class product quality, the meticulous and thoughtful service, and CZPT cooperation” is the philosophy that we always cherish. We not only meet the domestic market demand, but also export our products to Southeast Asia, the Middle East, Latin America and other countries, enjoying a good reputation. We always regard quality as life, and client as God. We will create a brilliant tomorrow with your sincere cooperation and support. 1. What’s your advantage?

  First we are manufacturer, we own professinal technology & quality control team; excellent team for foreign trade plus a rich expertise in trading.

2. What kinds of mainly products do you manufacture?

 We are a professional manufacturer of trailer axle assemblies, semi-trailer suspension systems and correlative fittings in China.
 
 3. Can you send me samples for testing?

  Certainly! We’d like to provide the samples free of charge, but for the freight, pls kindly bear it.

 4. How long do you finish a mew product?

  Usually 20~35days once all information confirmed.
 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Online
Condition: New
Axle Number: 2
Application: Trailer
Certification: CE, ISO
Material: Iron
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

What are the key differences between live axles and dead axles in vehicle design?

In vehicle design, live axles and dead axles are two different types of axle configurations with distinct characteristics and functions. Here’s a detailed explanation of the key differences between live axles and dead axles:

Live Axles:

A live axle, also known as a solid axle or beam axle, is a type of axle where the wheels on both ends of the axle are connected and rotate together as a single unit. Here are the key features and characteristics of live axles:

  1. Connected Wheel Movement: In a live axle configuration, the wheels on both ends of the axle are linked together, meaning that any movement or forces applied to one wheel will directly affect the other wheel. This connection provides equal power distribution and torque to both wheels, making it suitable for off-road and heavy-duty applications where maximum traction is required.
  2. Simple Design: Live axles have a relatively simple design, consisting of a solid beam that connects the wheels. This simplicity makes them durable and capable of withstanding heavy loads and rough terrains.
  3. Weight and Cost: Live axles tend to be heavier and bulkier compared to other axle configurations, which can impact the overall weight and fuel efficiency of the vehicle. Additionally, the manufacturing and maintenance costs of live axles can be lower due to their simpler design.
  4. Suspension: In most cases, live axles are used in conjunction with leaf spring or coil spring suspensions. The axle is typically mounted to the vehicle’s chassis using leaf springs or control arms, allowing the axle to move vertically to absorb bumps and provide a smoother ride.
  5. Off-road Capability: Live axles are commonly used in off-road vehicles, trucks, and heavy-duty applications due to their robustness, durability, and ability to deliver power to both wheels simultaneously, enhancing traction and off-road performance.

Dead Axles:

A dead axle, also known as a dummy axle or non-driven axle, is a type of axle that does not transmit power to the wheels. It is primarily used to provide support and stability to the vehicle. Here are the key features and characteristics of dead axles:

  1. Independent Wheel Movement: In a dead axle configuration, each wheel operates independently, meaning that the movement or forces applied to one wheel will not affect the other wheel. Each wheel is responsible for its own power delivery and traction.
  2. Weight Distribution: Dead axles are often used to distribute the weight of the vehicle more evenly, especially in cases where heavy loads need to be carried. By adding an extra axle without driving capability, the weight can be distributed over a larger area, reducing the load on other axles and improving stability.
  3. Steering: Dead axles are commonly used as front axles in vehicles with rear-wheel drive configurations. They provide support for the front wheels and allow for steering control. The steering is typically achieved through a separate mechanism, such as a steering linkage or a steering gear.
  4. Reduced Complexity: Dead axles are simpler in design compared to live axles since they do not have the additional components required for power transmission. This simplicity can lead to lower manufacturing and maintenance costs.
  5. Efficiency and Maneuverability: Dead axles are often used in vehicles where power delivery to all wheels is not necessary, such as trailers, certain types of buses, and some light-duty vehicles. By eliminating the power transmission components, these vehicles can achieve better fuel efficiency and improved maneuverability.

It’s important to note that the choice between live axles and dead axles depends on the specific application, vehicle type, and desired performance characteristics. Vehicle manufacturers consider factors such as load capacity, traction requirements, off-road capability, cost, and fuel efficiency when determining the appropriate axle configuration for a particular vehicle model.

axle

How do axle ratios impact the performance and fuel efficiency of a vehicle?

The axle ratio of a vehicle plays a crucial role in determining its performance characteristics and fuel efficiency. Here’s a detailed explanation of how axle ratios impact these aspects:

Performance:

The axle ratio refers to the ratio of the number of rotations the driveshaft makes to the number of rotations the axle makes. A lower axle ratio, such as 3.23:1, means the driveshaft rotates 3.23 times for every rotation of the axle, while a higher ratio, like 4.10:1, indicates more driveshaft rotations per axle rotation.

A lower axle ratio, also known as a numerically higher ratio, provides better low-end torque and acceleration. This is because the engine’s power is multiplied as it goes through the gears, resulting in quicker acceleration from a standstill or at lower speeds. Vehicles with lower axle ratios are commonly found in trucks and performance-oriented vehicles where quick acceleration and towing capacity are desired.

On the other hand, a higher axle ratio, or numerically lower ratio, sacrifices some of the low-end torque for higher top-end speed and fuel efficiency. Vehicles with higher axle ratios are typically used in highway driving scenarios where maintaining higher speeds and maximizing fuel efficiency are prioritized.

Fuel Efficiency:

The axle ratio directly affects the engine’s RPM (revolutions per minute) at a given vehicle speed. A lower axle ratio keeps the engine running at higher RPMs, which may result in increased fuel consumption. However, this ratio can provide better towing capabilities and improved off-the-line acceleration.

In contrast, a higher axle ratio allows the engine to operate at lower RPMs during cruising speeds. This can lead to improved fuel efficiency because the engine doesn’t have to work as hard to maintain the desired speed. It’s worth noting that other factors, such as engine efficiency, aerodynamics, and vehicle weight, also influence fuel efficiency.

Manufacturers carefully select the axle ratio based on the vehicle’s intended purpose and desired performance characteristics. Some vehicles may offer multiple axle ratio options to cater to different driving preferences and requirements.

It’s important to consider that changing the axle ratio can have implications on the overall drivetrain system. Modifying the axle ratio can affect the vehicle’s speedometer accuracy, transmission shifting points, and may require recalibration of the engine control unit (ECU) to maintain optimal performance.

As always, for precise information on a specific vehicle’s axle ratio and its impact on performance and fuel efficiency, it is best to consult the vehicle manufacturer’s specifications or consult with automotive experts.

axle

How do solid axles differ from independent axles in terms of performance?

When comparing solid axles and independent axles in terms of performance, there are several key differences to consider. Both types of axles have their advantages and disadvantages, and their suitability depends on the specific application and desired performance characteristics. Here’s a comparison of solid axles and independent axles:

Aspect Solid Axles Independent Axles
Load-Bearing Capability Solid axles have high load-bearing capability due to their robust and sturdy construction. They can handle heavy loads and provide excellent stability, making them suitable for off-road vehicles, heavy-duty trucks, and towing applications. Independent axles typically have lower load-bearing capability compared to solid axles. They are designed for lighter loads and offer improved ride comfort and handling characteristics. They are commonly used in passenger cars, sports cars, and vehicles with a focus on maneuverability and road performance.
Wheel Articulation Solid axles have limited wheel articulation due to their connected and rigid design. This can result in reduced traction and compromised wheel contact with the ground on uneven terrain. However, solid axles provide excellent traction in situations where the weight distribution on all wheels needs to be maintained, such as in off-road or rock-crawling applications. Independent axles offer greater wheel articulation as each wheel can move independently of the others. This allows the wheels to better conform to uneven terrain, maximizing traction and maintaining contact with the ground. Independent axles provide improved off-road capability, enhanced handling, and better ride comfort.
Ride Comfort Due to their rigid design, solid axles generally provide a stiffer and less compliant ride compared to independent axles. They transmit more road shocks and vibrations to the vehicle’s occupants, resulting in a rougher ride quality. Independent axles are known for providing better ride comfort. Each wheel can react independently to road imperfections, absorbing shocks and vibrations more effectively. This leads to a smoother and more comfortable ride, particularly on paved roads and surfaces with minor irregularities.
Handling and Stability Solid axles offer excellent stability due to their connected nature. They provide better resistance to lateral forces, making them suitable for high-speed stability and towing applications. However, the rigid axle design can limit overall handling and maneuverability, particularly in tight corners or during quick direction changes. Independent axles generally offer improved handling and maneuverability. Each wheel can react independently to steering inputs, allowing for better cornering performance and agility. Independent axles are commonly found in vehicles where precise handling and responsive steering are desired, such as sports cars and performance-oriented vehicles.
Maintenance and Repair Solid axles are relatively simpler in design and have fewer moving parts, making them easier to maintain and repair. They are often more resistant to damage and require less frequent servicing. However, if a component within the axle assembly fails, the entire axle may need to be replaced. Independent axles are typically more complex in design and have multiple moving parts, such as control arms, CV joints, or bearings. This complexity can result in higher maintenance and repair costs. However, if a failure occurs, only the affected component needs to be replaced, reducing repair expenses compared to replacing the entire axle.

It’s important to note that advancements in suspension and axle technologies have resulted in various hybrid systems that combine features of solid and independent axles. These systems aim to provide a balance between load-bearing capability, wheel articulation, ride comfort, and handling performance based on specific application requirements.

In summary, solid axles excel in load-bearing capability, stability, and durability, making them suitable for heavy-duty applications and off-road conditions. Independent axles offer improved ride comfort, better wheel articulation, enhanced handling, and maneuverability, making them suitable for passenger cars and vehicles focused on road performance. The choice between solid axles and independent axles depends on the specific needs and priorities of the vehicle or machinery.

China Professional 13t 16t American Type Heavy Duty Axle for Semi Trailer   a wheel and axle simple machineChina Professional 13t 16t American Type Heavy Duty Axle for Semi Trailer   a wheel and axle simple machine
editor by CX 2024-03-11

China Good quality New Products Sws Type Axle a wheel and axle simple machine

Product Description

Trailer Part Trailer SWS Type Axle Thailand Type Axle

Introduction of enterprise:
HangZhou Jinlibo Trade Co.,Ltd.has introduced sophisticated equipment from overseas to develop and manufacture semi-trailer axles and related parts.Holding ISO9001:2000 certification for our management system,we faithfully follow the stipulations of this standard so as to guarantee high product quality.
Characteristics:
1.Special heat-treat,low-alloy steel axle beam,it has the vitues of good synthetic performance,strong load ability and lower self weight.
2.High quality alloy solid inserted spindle,through wholy heat treatment,provide superior fatigue capability.
3.High performance premium non-asbestos brake linings,estend serbice life.
4.Easy for ABS installation.
5.Camshaft,matching with special seals,can ensure no entry of the grease into the brake drum,more safety.
6.New tight fit hub cap habe O rings,high property for sealing.
7.Grease lubricant is supplied by Mobil that lengthens the time of free maintenance.
8.Full range of stud fixing such as ISO,BSF and JAP,it can meet the requirements of various wheel rims.
Scope of our business
1.axles (German type axle,English type axle,American type axle,Spoke axle,ZM axle,Agriculture axle,Half axle,Axle without brake) 
2.Suspension (Bogie suspension,One point suspension,Rigid suspension,Spoke suspension,Machinery suspension)
3.Landing gear 
4.Fifth wheel (2”  3.5”) 
5.King pin (2”  3.5”)
6.Semi trailer 
7.Other axles and related parts (Low bed axle,hub,rims,spring,drum…) 

Products discreption:

WE CAN PRODUCE AS YOUR REQUESTS!

Thailand type axle specifications  
AXLE TYPE BRAKE SIZE WHEEL FIXIN NO.XSIZE OF WHEEL STUD (DIM A) WHEEL REG.DIA. (DIM B) DIM D BEARING WHEEL RIM SIZE BEAM SIZE TRACK LENGTH (DIM C) AXLE CAPACITY SPRING SEAT INSTALLATIONE  
SWS1318J 420*180 JAP 8XM20X285 221 722.5 32216  32218 20″ SQUARE150 1850mm 13T ≤450  
SWS1318I 420*180 ISO 10XM22X335 281 722.5 32216 
32218
20″ SQUARE150 1850mm 13T ≤450  
SWS2571I 420*220 ISO 10XM22X335 281 722.5 32220 32218 20″ SQUARE150 1850mm 20T    

Packing:

1.in bulk or as request
2.usually 1 20 feet contaiber can load 58 sets axles

 
 
 

 

 
 

 
 
 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Axle Number: 1
Application: Trailer
Certification: ISO
Material: Steel
Type: Semi-Trailer Axle
Customization:
Available

|

Customized Request

axle

Are there guidelines for choosing the right axle for towing heavy loads?

When it comes to towing heavy loads, selecting the appropriate axle is crucial for ensuring safe and efficient towing performance. While the specific guidelines may vary depending on the vehicle and towing requirements, there are general considerations to keep in mind when choosing the right axle. Here’s a detailed explanation of the guidelines for selecting the right axle for towing heavy loads:

Gross Axle Weight Rating (GAWR):

One of the primary factors to consider is the Gross Axle Weight Rating (GAWR) provided by the vehicle manufacturer. The GAWR specifies the maximum weight that an axle is designed to support safely. It is essential to ensure that the selected axle’s GAWR is sufficient to handle the anticipated weight of the loaded trailer and any additional cargo or passengers in the towing vehicle. Exceeding the GAWR can lead to axle failure, compromised handling, and safety risks.

Towing Capacity:

Check the towing capacity of your vehicle, which represents the maximum weight that the vehicle is rated to tow. The axle’s capacity should align with the towing capacity to ensure safe and efficient towing. Consider the type and size of the trailer you intend to tow, including its loaded weight, tongue weight, and any weight distribution considerations. The axle should be capable of handling the anticipated load without exceeding its capacity.

Matching Axle and Suspension:

The axle and suspension system work together to support the weight of the vehicle and the trailer being towed. It is important to ensure that the axle and suspension are properly matched to provide adequate support and stability. Consider the type of suspension (leaf springs, coil springs, air suspension) and the axle’s design (solid axle, independent suspension) to ensure compatibility and optimal towing performance.

Braking System:

When towing heavy loads, the braking system plays a critical role in maintaining control and safety. Ensure that the axle is equipped with appropriate brakes that can handle the increased load. Consider the type of brakes, such as electric brakes or hydraulic brakes, and their capacity to provide sufficient stopping power for the combined weight of the towing vehicle and trailer.

Weight Distribution:

Proper weight distribution is essential for safe towing. The axle should be selected based on the anticipated weight distribution between the towing vehicle and the trailer. Consider factors like tongue weight and the use of weight distribution hitches or sway control devices to ensure balanced weight distribution and optimal handling characteristics.

Consult Manufacturer Recommendations:

Always refer to the vehicle manufacturer’s recommendations, specifications, and guidelines when selecting an axle for towing heavy loads. The manufacturer’s guidelines will provide accurate and vehicle-specific information to help you make the right choice. Consult the owner’s manual or contact the manufacturer directly for any specific towing-related recommendations.

It’s important to note that towing requirements and axle specifications can vary depending on the vehicle make and model, as well as regional regulations. It is advisable to consult with automotive experts, such as mechanics or dealerships, who have expertise in towing and can provide specific recommendations based on your vehicle and towing needs.

axle

Can you provide insights into the advancements in axle technology in recent years?

In recent years, there have been significant advancements in axle technology to enhance performance, efficiency, and safety in vehicles. Here are some insights into the key advancements:

  1. Lightweight Materials:
  2. One notable advancement is the use of lightweight materials in axle construction. Manufacturers have increasingly utilized materials such as aluminum alloys and high-strength steels to reduce the weight of axles without compromising strength and durability. Lighter axles contribute to improved fuel efficiency and overall vehicle performance.

  3. Electronic Differential:
  4. Electronic differentials, also known as eDiffs, have gained popularity in recent years. They utilize sensors, actuators, and control algorithms to monitor and distribute torque between the wheels more efficiently. Electronic differentials enhance traction, stability, and handling by actively managing torque distribution, especially in vehicles equipped with advanced stability control systems.

  5. Advanced Axle Bearings:
  6. Axle bearings have seen advancements in design and materials to reduce friction, improve efficiency, and enhance durability. For example, the use of roller bearings or tapered roller bearings has become more prevalent, offering reduced frictional losses and improved load-carrying capacity. Some manufacturers have also introduced sealed or maintenance-free bearings to minimize maintenance requirements.

  7. Electric Axles:
  8. With the rise of electric vehicles (EVs) and hybrid vehicles, electric axles have emerged as a significant technological advancement. Electric axles integrate electric motors, power electronics, and gear systems into the axle assembly. They eliminate the need for traditional drivetrain components, simplify vehicle packaging, and offer benefits such as instant torque, regenerative braking, and improved energy efficiency.

  9. Active Suspension Integration:
  10. Advancements in axle technology have facilitated the integration of active suspension systems into axle designs. Active suspension systems use sensors, actuators, and control algorithms to adjust the suspension characteristics in real-time, providing improved ride comfort, handling, and stability. Axles with integrated active suspension components offer more precise control over vehicle dynamics.

  11. Improved Sealing and Lubrication:
  12. Axles have seen advancements in sealing and lubrication technologies to enhance durability and minimize maintenance requirements. Improved sealing systems help prevent contamination and retain lubricants, reducing the risk of premature wear or damage. Enhanced lubrication systems with better heat dissipation and reduced frictional losses contribute to improved efficiency and longevity.

  13. Autonomous Vehicle Integration:
  14. The development of autonomous vehicles has spurred advancements in axle technology. Axles are being designed to accommodate the integration of sensors, actuators, and communication systems necessary for autonomous driving. These advancements enable seamless integration with advanced driver-assistance systems (ADAS) and autonomous driving features, ensuring optimal performance and safety.

It’s important to note that the specific advancements in axle technology can vary across different vehicle manufacturers and models. Furthermore, ongoing research and development efforts continue to drive further innovations in axle design, materials, and functionalities.

For the most up-to-date and detailed information on axle technology advancements, it is advisable to consult automotive manufacturers, industry publications, and reputable sources specializing in automotive technology.

axle

Can you explain the importance of axle alignment for vehicle stability and handling?

Axle alignment plays a crucial role in ensuring vehicle stability and handling characteristics. Proper alignment of the axles is essential for maintaining optimal tire contact with the road surface, minimizing tire wear, maximizing traction, and promoting safe and predictable handling. Here are the key reasons why axle alignment is important:

  1. Tire Wear and Longevity:
  2. Correct axle alignment helps distribute the vehicle’s weight evenly across all four tires. When the axles are properly aligned, the tires wear evenly, reducing the risk of premature tire wear and extending their lifespan. Misaligned axles can cause uneven tire wear patterns, such as excessive wear on the inner or outer edges of the tires, leading to the need for premature tire replacement.

  3. Optimal Traction:
  4. Proper axle alignment ensures that the tires maintain optimal contact with the road surface. When the axles are aligned correctly, the tires can evenly distribute the driving forces, maximizing traction and grip. This is particularly important during acceleration, braking, and cornering, as proper alignment helps prevent tire slippage and improves overall vehicle stability.

  5. Steering Response and Stability:
  6. Axle alignment directly affects steering response and stability. When the axles are properly aligned, the vehicle responds predictably to driver inputs, providing precise and accurate steering control. Misaligned axles can lead to steering inconsistencies, such as pulling to one side or requiring constant correction, compromising vehicle stability and handling.

  7. Reduced Rolling Resistance:
  8. Proper axle alignment helps reduce rolling resistance, which is the force required to move the vehicle forward. When the axles are aligned correctly, the tires roll smoothly and effortlessly, minimizing energy loss due to friction. This can contribute to improved fuel efficiency and reduced operating costs.

  9. Vehicle Safety:
  10. Correct axle alignment is crucial for ensuring vehicle safety. Misaligned axles can affect the vehicle’s stability, especially during emergency maneuvers or sudden lane changes. Proper alignment helps maintain the intended handling characteristics of the vehicle, reducing the risk of loss of control and improving overall safety.

To achieve proper axle alignment, several key parameters are considered, including camber, toe, and caster angles. Camber refers to the vertical tilt of the wheel when viewed from the front, toe refers to the angle of the wheels in relation to each other when viewed from above, and caster refers to the angle of the steering axis in relation to vertical when viewed from the side. These alignment angles are adjusted to meet the vehicle manufacturer’s specifications and ensure optimal performance.

It’s important to note that factors such as road conditions, driving habits, and vehicle modifications can affect axle alignment over time. Regular maintenance and periodic alignment checks are recommended to ensure that the axles remain properly aligned, promoting vehicle stability, handling, and safety.

China Good quality New Products Sws Type Axle   a wheel and axle simple machineChina Good quality New Products Sws Type Axle   a wheel and axle simple machine
editor by CX 2024-03-05

China OEM High Rigidity Rotating Spindle Wind Power Spindle Machine Tool Spindle Primary Drive Spindle Motor Spindle Milling Machine Spindle cv axle replacement cost

Product Description

Wind power spindle

Product Description

 

Product Name Wind power spindle
Design Can be at the customer’ request, tailor-made, at customer’s design
Advantage ZJD can provide the wind power spindle according to customers technical specifications.

 

    Our Advantages

    Application

      

     

    Product Display

    Company Profile

    ZJD is located in Xihu (West Lake) Dis. Economic Development Zone, Xihu (West Lake) Dis. District, HangZhou, ZheJiang , which has very good transportation convenience and location advantages.ZJD own 1 subsidiary, which is located in HangZhou city, ZheJiang province, which is mainly responsible for EMU accessories for CRRC’s factory nearby.
    ZJD’s production and office space is more than 12,000 square meters, and more than 60 sets of various types of CNC machining and quality control equipment.ZJD’s main products are widely used in CRRC CR400, CR300, CR200 series standard EMUs, and expanded to subways, export passenger cars and EMUs and other products.
    ZJD has more than 60 employees and more than 20 technical management personnel. The technical management team has many years of working experience in the rail transit industry. 

    Certifications

    ZJD has obtained the national high-tech enterprise certification, 6 types of products have passed the high-tech certification, and related products have obtained more than 20 patents. 
    ZJD has established a comprehensive quality management system and has got ISO9001 quality management system certification, ISO/TS 22163 (IRIS) international railway industry standard certification, EN15085-2 railway vehicles welding system certification, and CRRC product supply service qualification certification. 

    FAQ

    1. Who are we?

    HangZhou ZJD Rail Equipment Co.,Ltd. was established in 2012, which is a professional manufacturer of rail equipment and accessories.

    2. Are you a reliable supplier?
    ZJD-Excellent Manufacturer focusing on the rolling stock industry
    Provide full-process Design, Production, Testing and Service according to customer requirements.

    3.What can you buy from us?
    We have designed and supplied a series of products such an air duct systems, piping systerms, pneumatic control units,etc.The product are used in various fields such an EMUs,subways,locomotives,wagon engineering vehicles,etc. 

    4. What services can we provide?
    Provide customized services of heavy industry products for special requirements.
    Provide diversified parts and trade services such as port machinery, steel heavy industry, mining machinery, etc.
    Provide customized products for new energy equipment
    Provide key process technology solutions for special parts in the field of new energy equipment.

     

    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Material: Carbon Steel
    Load: Revolution Axis
    Stiffness & Flexibility: Stiffness / Rigid Axle
    Axis Shape: Straight Shaft
    Shaft Shape: Real Axis
    Appearance Shape: Round
    Customization:
    Available

    |

    Customized Request

    axle spindle

    What is the relationship between the axle spindle and the wheel bearing in a vehicle?

    In a vehicle, the axle spindle and the wheel bearing are two interconnected components that work together to allow the wheel to rotate smoothly and support the vehicle’s weight. Here’s a detailed explanation of their relationship:

    The axle spindle is a key part of the vehicle’s suspension system, specifically in the axle assembly. It is a shaft-like component that protrudes from the axle housing and provides support for the wheel assembly. The spindle is typically located at the center of the wheel hub and serves as a mounting point for various components, including the wheel bearing.

    The wheel bearing, on the other hand, is a set of precision-engineered bearings that are usually housed within a hub assembly. It is responsible for reducing friction and facilitating the smooth rotation of the wheel. The wheel bearing allows the wheel to spin freely while supporting the weight of the vehicle and enduring the forces generated during acceleration, braking, and cornering.

    The relationship between the axle spindle and the wheel bearing is one of integration and mutual dependency. The axle spindle provides the structural support and attachment point for the wheel bearing assembly. The wheel bearing, in turn, enables the wheel to rotate with minimal friction and provides load-bearing capability.

    When the vehicle is in motion, the axle spindle transfers the weight of the vehicle and the forces generated by the road surface to the wheel bearing. The wheel bearing, with its lubricated bearings and races, allows the wheel to rotate smoothly and evenly distribute the applied forces. This relationship ensures that the wheel assembly operates effectively, providing stability, control, and a comfortable ride.

    Over time, the wheel bearing may experience wear and tear due to continuous use, exposure to contaminants, or lack of proper maintenance. When a wheel bearing becomes worn or damaged, it can lead to various symptoms such as excessive noise, vibration, uneven tire wear, or even wheel detachment. In such cases, it is necessary to replace the wheel bearing assembly, which often involves disassembling the axle spindle to access and replace the bearing.

    It’s important to note that the specific design and configuration of the axle spindle and wheel bearing can vary between different vehicle models and manufacturers. Some vehicles may have integrated wheel bearing and hub assemblies, while others may have separate components that are assembled onto the spindle. It is recommended to consult the vehicle’s repair manual or seek professional assistance for specific instructions and procedures related to your vehicle.

    In summary, the axle spindle and the wheel bearing have a close relationship in a vehicle’s suspension system. The axle spindle provides structural support and serves as the mounting point for the wheel bearing assembly. The wheel bearing, in turn, allows the wheel to rotate smoothly, supports the vehicle’s weight, and helps absorb the forces generated during driving. Understanding this relationship is important for proper maintenance, repair, and replacement of the wheel bearing assembly.

    axle spindle

    Can axle spindles be upgraded for improved performance, and if so, what are the options?

    Axle spindles can be upgraded to improve the performance of a vehicle, particularly in applications where higher strength, durability, or enhanced capabilities are desired. Upgrading axle spindles can provide benefits such as increased load capacity, improved off-road capability, or enhanced towing capabilities. Here are some options for upgrading axle spindles:

    • High-Strength Axle Spindles: One option is to replace the stock axle spindles with high-strength counterparts. High-strength axle spindles are typically made from stronger materials or feature reinforced designs to handle heavier loads or harsher conditions. These upgraded spindles can enhance the overall strength and durability of the axle assembly.
    • Performance Axle Spindles: Performance-oriented axle spindles are designed to improve the handling and responsiveness of the vehicle. These spindles may feature optimized geometry, reduced weight, or enhanced stiffness to provide better cornering abilities, reduced body roll, or improved steering precision. Performance axle spindles are commonly used in applications such as racing or high-performance vehicles.
    • Off-Road Axle Spindles: Off-road enthusiasts may opt for axle spindles specifically designed for rugged terrains. These spindles often have increased ground clearance, improved articulation, or additional reinforcement to withstand the demands of off-road driving. They can enhance the vehicle’s off-road capability, allowing for traversing challenging obstacles and rough terrain more effectively.
    • Towing and Hauling Axle Spindles: Upgraded axle spindles for towing or hauling purposes are engineered to handle heavier loads and provide increased stability. These spindles may have reinforced construction, larger bearings, or specialized features such as integrated trailer brake connections. Upgrading to towing or hauling axle spindles can enhance the vehicle’s towing capacity and improve overall towing performance.
    • Custom Axle Spindles: In some cases, custom axle spindles can be fabricated or modified to meet specific performance requirements. This option is typically utilized in specialized vehicle applications or when specific performance goals cannot be achieved with off-the-shelf upgrades. Custom axle spindles allow for tailored solutions that can address unique needs and performance objectives.

    When considering axle spindle upgrades, it is essential to ensure compatibility with other components of the axle assembly, such as bearings, hubs, and brakes. Upgrades may also require modifications to other parts of the vehicle, such as suspension systems or steering components, to optimize performance and maintain overall safety and reliability.

    It is recommended to consult with knowledgeable professionals, such as experienced mechanics, axle specialists, or vehicle customization experts, to determine the most suitable upgrade options for your specific vehicle and performance goals. They can provide guidance on selecting the appropriate axle spindle upgrades and ensure proper installation and integration into the vehicle’s overall system.

    axle spindle

    What is the primary role of the axle spindle in a vehicle’s suspension system?

    The primary role of the axle spindle in a vehicle’s suspension system is to support and facilitate the rotation of the wheel assembly. Here’s a detailed explanation:

    The axle spindle, also known as the wheel spindle or stub axle, is a component of the suspension system that connects the wheel hub assembly to the suspension system. It plays a crucial role in supporting the weight of the vehicle, transmitting driving forces, and allowing the wheel assembly to rotate smoothly.

    Here are the primary functions and roles of the axle spindle:

    • Wheel Mounting: The axle spindle provides a mounting point for the wheel hub assembly. It typically extends from the steering knuckle or axle beam and incorporates a flange or hub surface where the wheel is mounted. The spindle ensures proper alignment and secure attachment of the wheel to the suspension system.
    • Load Support: One of the main responsibilities of the axle spindle is to support the weight of the vehicle and any additional loads. It transfers the vertical load from the wheel assembly to the suspension system and ultimately to the vehicle chassis. The spindle should be designed to withstand the weight and forces encountered during normal driving conditions.
    • Wheel Rotation: The axle spindle allows the wheel assembly to rotate freely. It acts as an axle or pivot point around which the wheel rotates when the vehicle is in motion. The spindle is typically designed with a smooth, cylindrical shape that fits into the wheel bearings, allowing for low-friction rotation.
    • Steering Function: In some suspension systems, particularly those with steering knuckles, the axle spindle also plays a role in the steering function. It connects to the steering linkage or tie rods, allowing for the controlled movement of the wheel assembly during steering maneuvers. The spindle’s design and attachment points should facilitate the proper functioning of the steering system.
    • Transmission of Forces: The axle spindle transmits driving and braking forces from the wheel assembly to the suspension system. These forces include torque from the engine during acceleration and braking forces when the brakes are applied. The spindle should be able to handle these forces without failure or excessive deflection.

    It’s important to note that the design and construction of axle spindles can vary depending on the specific suspension system used in a vehicle. Different suspension types, such as independent suspension or solid axle suspension, may have variations in spindle design and attachment methods. Additionally, the axle spindle must be properly lubricated and maintained to ensure smooth operation and longevity.

    In summary, the primary role of the axle spindle in a vehicle’s suspension system is to support and facilitate the rotation of the wheel assembly. It provides a mounting point for the wheel hub assembly, supports the vehicle’s weight, allows for wheel rotation, contributes to the steering function, and transmits driving forces. The design and construction of the axle spindle may vary depending on the suspension system used in the vehicle.

    China OEM High Rigidity Rotating Spindle Wind Power Spindle Machine Tool Spindle Primary Drive Spindle Motor Spindle Milling Machine Spindle   cv axle replacement costChina OEM High Rigidity Rotating Spindle Wind Power Spindle Machine Tool Spindle Primary Drive Spindle Motor Spindle Milling Machine Spindle   cv axle replacement cost
    editor by CX 2024-02-10

    China China Factory Direct Tri-Axles 16 20 Tonsaxle Trailer ATV Rear Axle Manufacturers Rear Axles Electric Axle Front Axle for Sale a wheel and axle simple machine

    Product Description

    China factory direct Tri-axles 16 20 Tonsaxle trailer atv rear axle manufacturers rear axles electric axle front axle for sale

    Product features

    Specially treated 1 piece of high quality low alloy steel shaft tube has strong bearing capacity, long life, light weight and excellent performance.

    “P” straight or conical shaft head, bearing with medium frequency quenching, strong fatigue resistance.

    The braking system with high machining accuracy makes the braking performance more stable.

    “Q” type heavy brake with a strong return spring.

    Using high performance asbestos – free brake friction sheet, brake performance is good, long wear – resistant life.

    Camshaft equipped with special seal to ensure that grease does not enter the brake drum, to ensure safety.

    The new seal hubcap is equipped with o-ring seal, which has good sealing performance.

    Comply with us fmvss-121 and Australian ADR 38 standard.

     

      Model

     Capacity

       (kg)

     Brake size

       (mm)

    Track

    (mm)

    Axle Tube

    (mm)

    Studs PCD

    Total length

    (mm)

    Bearing
    LH/10.5T  10500   S420*180 1820 round 127*127 10*M22*1.5 335 ~2165

    InnerIIM518445/10

    OuterIIM518445/10

     

    LH/13T  13000   S420*180 1840 square 150*150 10*M22*1.5 335 ~2185
    LH/14T  14000   S420*200 1840 square 150*150 10*M22*1.5 335

     

    ~2185

    LH/16T  16000   S420*220 1850 square 150*150 10*M22*1.5 335 ~2205
    LH/20T  20000   S420*220 1850 square 150*150 10*M24*1.5 335 ~2252

     

    Remarks:1.Track can be customized according to customer requirements

                    2.Axle can install ABS system

     

     

      

     

    Condition: New
    Axle Number: 1
    Application: Trailer
    Certification: ISO
    Material: Steel
    Type: Rear Axles

    ###

    Customization:

    ###

      Model

     Capacity

       (kg)

     Brake size

       (mm)

    Track

    (mm)

    Axle Tube

    (mm)

    Studs PCD

    Total length

    (mm)

    Bearing
    LH/10.5T  10500   S420*180 1820 round 127*127 10*M22*1.5 335 ~2165

    InnerIIM518445/10

    OuterIIM518445/10

     

    LH/13T  13000   S420*180 1840 square 150*150 10*M22*1.5 335 ~2185
    LH/14T  14000   S420*200 1840 square 150*150 10*M22*1.5 335

     

    ~2185

    LH/16T  16000   S420*220 1850 square 150*150 10*M22*1.5 335 ~2205
    LH/20T  20000   S420*220 1850 square 150*150 10*M24*1.5 335 ~2252
    Condition: New
    Axle Number: 1
    Application: Trailer
    Certification: ISO
    Material: Steel
    Type: Rear Axles

    ###

    Customization:

    ###

      Model

     Capacity

       (kg)

     Brake size

       (mm)

    Track

    (mm)

    Axle Tube

    (mm)

    Studs PCD

    Total length

    (mm)

    Bearing
    LH/10.5T  10500   S420*180 1820 round 127*127 10*M22*1.5 335 ~2165

    InnerIIM518445/10

    OuterIIM518445/10

     

    LH/13T  13000   S420*180 1840 square 150*150 10*M22*1.5 335 ~2185
    LH/14T  14000   S420*200 1840 square 150*150 10*M22*1.5 335

     

    ~2185

    LH/16T  16000   S420*220 1850 square 150*150 10*M22*1.5 335 ~2205
    LH/20T  20000   S420*220 1850 square 150*150 10*M24*1.5 335 ~2252

    Understanding the Working of an Axle

    An axle is the central shaft of a rotating gear or wheel. It can be fixed to wheels or to the vehicle and can rotate along with them. The axle may include a number of bearings and other mounting points. Axles are essential for the operation of many types of vehicles. To understand the working of an axle, you should understand its basic purpose.
    Axles

    Vehicles with two axles

    There are many different types of vehicles, but most are characterized by having two axles. Two axles are common in SUVs, trucks, and other vehicles that are meant to be off-road or for light hauling. Vehicles with two axles also include light-duty cargo vans and passenger cars.
    There are many different kinds of two-axle vehicles, ranging from bicycles to motorcycles. In the United States, the most common kind of two-axle vehicles are pickup trucks, SUVs, and sedans. Three-axle vehicles are also common, with the largest type being tractor-trailers. Four-axle vehicles are rare, though. Some class 8 trucks have two-axle tractors.
    Two-axle vehicles typically have two axles, with one axle supporting each of the two wheels. Other types of vehicles have three or four axles. The more axles a vehicle has, the more stability it has and the more weight it can handle. Two-axle vehicles are common, but three-axle vehicles are popular in transporting large cargo. Some are even designed with raised axles.
    The number of axles on a car depends on its size and purpose. A car has a front axle and a rear axle. The front axle steers the vehicle, and the rear axle powers the wheels. The number of axles in a truck is largely dependent on its size and load, and some trucks have as many as four.
    The front axle and rear axle are connected by a drive shaft. The driveshaft connects to the engine, which turns the axles. The two axles transfer the power from the engine to the wheels, and they may also help drive the vehicle. Axles are essential components of a vehicle, and should be strong and durable.
    Axles are also important for a vehicle’s turning radius. Heavy-duty vehicles, such as semi-trucks, have large turning radii. Because they run across the width of the vehicle, axles make it possible for the wheels to turn freely. In addition to allowing the wheels to turn, they also support the weight of the vehicle.
    Typical vehicles with two axles include the Toyota Rav4 and the Ford Mustang. The Rav4 uses two axles in front and rear-wheel drive. The Ford Mustang, on the other hand, has a live rear axle. In addition, the Mustang is also two axles. A tandem axle is an arrangement of two rear axles close together. It is a popular style in large vehicles.

    Vehicles with three axles

    There are many different types of vehicles with three axles. Some of the most common include the dump truck, Greyhound bus, and tractor-trailer. Vehicles with three axles are generally heavier than four-axle vehicles. Vehicles with three axles have two sets of wheels – one front and one back. For example, a heavy truck will have three rear axles, a semi-trailer will have two front axles, and a tow truck will have two drive axles and two steer axles.
    A vehicle’s axle count can vary. A simple method of figuring out the number of axles in a vehicle is to count the wheels. There are many ways to find out the number of axles on a vehicle. You can also look in the owner’s manual or ask a mechanic. If you’re unsure, ask someone who knows how to tell if a vehicle has three or four axles.
    The design of a vehicle’s axles has several benefits. One of these benefits is its ability to disperse weight across a larger area, thereby reducing the risk of the vehicle sinking into soft ground. Dump trucks often drive to delivery sites with the third axle raised, lowering it only when it’s time to cross a soft area.
    The number of axles in a vehicle is a crucial factor in determining how much power it needs to move. Different vehicles are designed to handle different terrains and have different axles to match their needs. For example, two-axle vehicles have two front axles, while three-axle vehicles have three rear axles.
    A front axle is located at the front of the vehicle and helps with steering and processing road shocks. A front axle is often made of carbon steel, while a stub axle is a fixed axle that supports only one wheel. The front axle is connected to the stub axle through a kingpin.
    Vehicles with three axles are generally larger than two axle vehicles. However, some two-axle vehicles can be three-axle, especially if they have a trailer. The design of a vehicle with three axles depends on what type of trailer it has. A two-axle trailer will usually have a trailer attached to it, and the rear axle will be responsible for moving power from the differential to the rear wheels.
    Unlike semi-floating axles, full-floating axles are supported by two large bearings. They’re used for larger vehicles with high towing capacities. They also help with wheel alignment. A three-quarter floating axle is more complex than a semi-floating axle, and is often found in mid-size trucks.
    There are also vehicles with a middle axle. Figures 2 and 3 illustrate this arrangement. The front and rear axles support most of the weight of the vehicle and the secondary axle has almost no ground weight. The secondary axle has a ground weight that is only 8.5% of the vehicle’s unloaded weight. The wheels of the vehicle remain in contact with the ground. Leaf spring 1 is coupled to the middle secondary axle.

    Types of axles

    There are several different types of axles, and each is different in function. Some have bearings on each end, while others don’t. These two types of axles have different strengths and weaknesses, so it’s important to know which one is right for you. The best axle for your vehicle depends on your driving needs and budget.
    The most basic type of axle is the axle shaft. This is the most inexpensive kind of axle. It connects the wheel hub to the axle shaft. The axle shaft is attached to the wheel hub by bolts. The wheel axle sits in the middle of the axle shaft. The bearings and axle casing transfer the weight of the wheel to the axle. The bearings are designed to distribute the weight evenly on both sides of the axle.
    Another type of axle is the reverse Czpt stub axle. It is similar to the standard Czpt stub axle, but the reverse Czpt is designed with an L-shaped spindle. The rear axles also come in different types. These depend on how they are mounted on the vehicle. There are three different types of rear axles: rigid axles, semi-floating axles, and floating axles.
    A full floating axle, on the other hand, does not support the weight of the vehicle. It is attached to the wheel hub and axle housing. It is most common in trucks and heavy duty vehicles. These axles are also the most durable, but they can only handle a heavy load. If the axle shaft breaks or is damaged, the vehicle will drop.
    The type of axles a vehicle has is important because it affects the turning radius. A single axle vehicle has one drive axle at the rear, while a tandem vehicle has two drives. This means that the vehicle has a larger turning radius than a single axle one. There are also a variety of designs that allow it to turn at higher speeds and with less torque.
    Lastly, a dead front axle is an immovable front axle, not revolving with the wheels. It is protected by housings and is a good choice for vehicles that cannot be driven in wet conditions. They provide the driving power from the Axles to the front wheels. The Czpt type uses a kingpin, while the Lamoine type uses a yoke-type hinge.
    Three quarter floating axles are a hybrid between a full and semi floating axle. In this type, the axle is attached to the hub through bearings. As a result, it eliminates the shearing stress of the axle and focuses on bending loads. These axles are cheaper than the semi-floating type, and they are used in lighter trucks.
    A semi-floating axle, on the other hand, has a bearing inside its axle casing. This axle is a lightweight option that still supports all the vehicle’s weight. This axle is generally used on light-duty pickups and mid-size trucks.
    China China Factory Direct Tri-Axles 16 20 Tonsaxle Trailer ATV Rear Axle Manufacturers Rear Axles Electric Axle Front Axle for Sale     a wheel and axle simple machineChina China Factory Direct Tri-Axles 16 20 Tonsaxle Trailer ATV Rear Axle Manufacturers Rear Axles Electric Axle Front Axle for Sale     a wheel and axle simple machine
    editor by czh 2022-12-07

    China wholesaler Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia Bridge Steel Structures with Best Sales

    Product Description

    Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia bridge steel structure

    Introduction&Application:

       The machine is mainly used for processing holes on H-beam, Channel beam with Angle beam and plate drilling and marking processing, high speed, the positioning, feeding of 3 spindles are all driven by servo motor. It adopts spindle servo motor, controls by YOKOGAWA PLC., and in-feeding by CNC carriage, high efficiency, and high precision; and it is wildly used in construction, bridge and tower mast & rack, with other industries.
      The main advantage of high speed CNC drilling SWZ1250H, it’s high speed drilling, rotation speed can reach 3000rpm.
      Due to SWZ1250H using the carbide drill bits, single hole processing efficiency increased to more than 5 times than the normal speed machine, the overall production efficiency more than 2 times than the normal machine.
      For example: 22 mm diameter, thickness 20 mm workpiece, SWZ series drilling 1 hole need about 30 seconds, SWZ1250H series can be controlled within 5 seconds. 

    Machine feature: 

         1), The whole machine is optimized integrated design, with high quality machine body and drilling units, which ensure high stability and high rigidity when high speed drilling. This machine is mainly composed of main machine, CNC sliding table (3), drilling spindle box (3), clamping device, detection device, cooling system, scrap box, hydraulic station, lubrication system, Tool Magazine(optional), marking unit (optional).
        2), The main machine is welded by square pipe. The structure of main machine is strengthened where the stress is greater. After welding, artificial aging treatment was carried out. All these ensure the stability of the main machine and then ensure accuracy of the whole machine.
        3), There are 3 CNC sliding tables: fixed side CNC sliding table, movable side CNC sliding table and intermediate CNC sliding table. The 3 sliding tables are similar in structure and are composed of sliding plate, sliding table and servo drive system.
        4), There are 6 CNC axes on the 3 sliding tables, including 3 feeding CNC axes and 3 positioning CNC axes. Each CNC axle is guided by precise linear rolling guide, driven by AC servo motor and ball screw, which ensures positioning accuracy.
        5), There are 3 spindle boxes,  which are mounted on 3 NC sliding tables for horizontal and vertical drilling. Each drilling spindle box can drill both separately and simultaneously.
        6), Used high-speed precision spindle from ZheJiang ‘s well-known brand, model BT, which can meet the using demand of both hard alloy and high-speed steel drill. Every CNC axes are guided by the heavy loading roller linear guide, driven by the servo motor and roller screw which ensure the rigidity and positional accuracy. 
       7). Also equips with hydraulic tool cylinder, using hydraulic -disc spring to do automatic tool de-clamping, tool pulling, with tool status monitoring device to check the tool clamping and effective safety co-locking protection device. Easy to change tools. The spindle is driven by spindle servo and timing belt, reducing ratio i=2 , spindle speed is 0~3000r/min, large rotation speed range.
       8), The workpiece is fixed by hydraulic clamping method. There are 5 hydraulic cylinders, which are clamped horizontally and vertically. Horizontal clamping consists of fixed side datum and moving side clamping, fixed side datum is fixed, moving side clamping is driven by large cylinder sliding table, guided by linear CZPT rail, moving towards the fixed side to clamp the workpiece horizontally; vertical clamping is on both fixed side and moving side, and each cylinder drives the pressure bar to move up and down in 4 positions. The workpiece is clamped vertically.
        9), The machine is fed by a NC carriage. The NC carriage is decelerated by the servo motor through the reducer and then passes through the gear rack to driven a laser alignment device. When the workpiece is fed in, the workpiece can be detected and then fed back to realize the precise positioning of the workpiece.
       10), Cooling system: using air-fog cooling, with the internal and external cooling. Each drilling spindle box is equipped with its own external cooling nozzle and internal cooling joint, which can be selected according to the needs of drilling holes. Internal and external cooling can be used independently or simultaneously.
       11), Chip collecting box: Universal caster guide, easy to carry.
       12), The hydraulic system is for auto tool device of ram type drilling box,Horizontal clamping, vertical clamping, side pushing and power raceway, unified oil supply; all the hydraulic units are from imported brands or joint venture companies, for easy maintenance and solving oil leaking, all the design adopts accumulative valves.If marking unit is equipped, there is also an independent hydraulic station for marking unit action.
       13), Machine equips with auto lubrication system, automatic pump the lubrication oil into and do fully lubrication for each and every part of linear guide, ball screw nuts and every rolling bearings etc at regular time, no need manual lubrication, increase the parts life and save time. All the lubrication pump and units are using famous brands. 
      14), Tool Magazine(optional):Installed 3 inline type tool magazine, which realize the automatic tool change, also meet the demand of drilling multiple diameter’s hole. Oil spray and air spray cooling, has inner cooling and outer cooling efficacy.
      15), Marking unit(optional): The marking unit adopts the disc typing structure, 0-9, A-Z, 36 characters are distributed on the disc, and the position is selected by the servo motor.
      16), The control system is FACTORY PLC. Strong anti-interference, high precision, because of the digital communication, thus overcome the defect of easy be interference in traditional pulse analog transmission.
      17), In order to ensure the accuracy, reliability and stability of transmission system, electrical system, hydraulic system, all the key components are from international famous brand.

    Three BT40 Drilling Spindles (Top, Left and Right) with drilling function
    Marking Unit and function:
    Workpiece Sample with hole groupMain Specification:

    Model XT-SWZ1250
    Workpiece size H Beam Web x Flange (mm) 150×80~1250×600
    U Beam WebxFlange (mm) 150×80~1250×400
    Box Beam WebxFlange (mm) 150×80~1250×400
    Angle Beam WebxFlange (mm) 200x200x16
      Max. Thickness(mm) ≤80
    Max. material length(mm) 12000
    Short material limiting mm Automatic processing≥3000
    Manual processing: 690~3000
    Spindle Spindle Axis 3
    Spindle taper BT40
    Spindle rotation speed(r/min)
    Stepless speed regulation
    200~3000
    Max. hole diameter(mm) Fixed Side, 
    Moving Side
    Φ40(High Speed)
    Intermediate Unit
    Center line movement scope(mm) Center slide table/
    Horizontal direction
    50~1450
    Fixed side/movement side
    Vertical direction
    30~770
    3 Positioning CNC axis moving speed m/min 0-10m/min
    3 feed CNC axis moving speed m/min 0-5m/min
    Web width detection stroke mm 1100
    Web height detection stroke mm 290
    Motor power Spindle motor power (KW) 3*11
    Servo motor power of 3 Pcs feeding Axis(KW) 3*2
    Servo motor power of 3 Positioning Axis (KW) 3*1.5
    Feeding Trolley Feeding trolley servo motor(KW) 5
    Maximum feeding speed(m/min) 20m/min
    Maximum feeding weight(Tonnes) 10T
    Control system CNC System Japan YOKOGAWA PLC
    CNC Axis Quantity 7
    Hydraulic system Max. Hydraulic Pressure (MPa) 7.5
    Motor power(KW) 5.5
    Cooling system No. of  Nozzle 3
    Pressure of compressed air (Mpa) ≥0.5
    Cooling way Internal Cooling & External Cooling
    Tool Magazine(optional) Tool Magazine Quantity 3
    Tools quantity for each Magazine 4 Pieces
    Marking unit(optional) No. of Characters 36 Characters
    Characters Size Φ10 mm
    Imprinting Depth 0.8~1.5mm
    Position servo motor(KW) 0.75
    Working environment Working power Three phase 4 wire system 380±10%V, 50HZ
    Control power 220±10%V 50HZ
    Operate power 24V DC
    Working temperature 0ºC ~ 40ºC
    Humidity of environment ≤75%
    Overall dimension(L×W×H)(mm) About 6000×2100×3400
    Main Machine weight (Kg) About 8000

    List of the Key Outsourced Components:

    NO. Name Manufacturer
    Main Electric Component
    1 Control system Japan FACTORY PLC
    2 Servo Motor Japan Panasonic
    3 Servo Driver Japan Panasonic
    4 Spindle motor Brand of China
    5 Computer Lenovo China
    6 Rotary encoder Weidmuller
    7 Proximity Switch Normal Open Brand of china
    Normal Close
    8 Proximity switch Brand of china
    9 Photoelectric Switch Germany SICK
    Main Hydraulic Pressure Components
    1 Hydraulic valves(Main) Italy ATOS
    Main Mechanical Components
    1 Ball screw ZheJiang
    2 Linear guide ZheJiang
    3 Precision spindle ZheJiang
    Other components
    1 Spraying cooling pump ARXIHU (WEST LAKE) DIS.NE
    2 Nozzle BIJUR
    3 Pneumatic 2 couplet AirTac
    4 Cylinder AirTac

       Note: The above parts are supplied by our Approved Suppliers. If encounter special situation, we will take replace with same or higher quality level parts.

    Applicable Industry:
        The machine tool is mainly used for drilling H-shaped steel, channel steel and other workpieces, and is widely used in construction, bridges and other industries.

    Company Introduction:
        ZheZheJiang nshine CNC is always focusing on our ultimate goal – to secure and increase our customer’s productivity – has made us the leader in China market in the manufacture of machines for processing angle bar, beam channel profiles, steel plates, tubesheet and flanges, mainly serving for fabricating iron towers, steel structure, heat exchangers, boilers, bridges, and trucks.Strong R & D center with more than 10 engineers team, 25 years of experience from year 1996, more than 100 staff, plant area about 25,000 sqm., very harsh quality control of every component and the whole machine, about 12 million US dollars sales turnover per year.
         
         Sunshine CNC machines’ market share in China is around 70% and exported to 50+ countries across globe market. All top ranked tower manufacturers, steel structure fabricators and power station makers, bridge/railway manufacturers, truck makers are our clients.
       
        Main products: CNC Angle Line, CNC Beam Drilling Sawing Machine, CNC Plate Drilling Machine, CNC Rail Processing Machine, CNC Tubesheet Flange Drilling Machine, Truck beam plate punching machine, etc. 

        One measure of the outstanding quality of our machines is their longevity: many Sunshine’s machines have been in operation for more than 10 years! Many clients are continually placing repeated orders which verified well our machines’ perfect quality and reliable performance.

         The company drafted many China national standards for CNC angle line machine and CNC beam drilling sawing machine and CNC plate drilling machine.
    Relevant Certificate:

      After-sales Service:
      Training for installation and service:

      A. We will supply the machine with training video and user’s manual in English for installing, operation, maintenance and trouble-shooting, and shall give technical CZPT by e-mail, , Wechat, telephone/MSN/ICQ and so on, when you meet some problems of installation, using or adjusting.
     

      B. You can come to our factory for inspection and training. We will provide professional guide. Direct and effective face-to-face training. Here we have assembled equipment, all sorts of tools and testing facility,we will also provide accommodation during training period.

      C.The Strong after–sale service team in China, Our engineers (staffs) can speak fluent English to communicate and solve question when you have requirement calendar day per person.

      D. Depending on the region, If need our engineer to visit for installation, we will dispatch engineer for installation and service at your site.

     
      
    Warranty:

       The guarantee period of quality shall be 12 months counting from the date on which the machine finished installation and accept by Buyer. We are responsible for providing the free of charge during the guarantee period. If out of guarantee time, all damaged parts are charged.

      Packaging of interntaional standard way 

      FAQ:
       1. When can you arrange shipment?
        For machines available in stock, the shipment can be arranged within 15 days after getting advance payment or L/C;
        For machines non available in stock, the shipment can be arranged with 60 days after getting advance payment or L/C.

        2. What can you do if my machines have problems?
        1) We can send you free components if machines are in warranty period;
        2) 24 hours service on line;
        3) We can assign our engineers to serve you if you want.

        3. Do you provide machine operation training?
         Yes. We can send professional engineers to the working site for machine’s installation, commissioning and operation training.

        4. Which machine model shall I choose when I purchase from you?
        Please share us your material size and your processing request, then we will recommend our machine most suitable and most cost effective for your work demand.

       5. What’s your machine’s market share in China?
       Our market share in China is about 70%+, and we’ve exported to 50+ countries across the globe market, since year 1996.

    If you have an questions, pls call us without hesitation. Thanks! 

    Best Regards 
    Jack-Director 

      
     

     

    The Functions of Splined Shaft Bearings

    Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

    Functions

    Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
    Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
    A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
    While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
    A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
    splineshaft

    Types

    There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
    Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
    In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
    Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
    Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
    splineshaft

    Manufacturing methods

    There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
    Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
    Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
    Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
    Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
    A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
    splineshaft

    Applications

    The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
    Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
    Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
    Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
    There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

    China wholesaler Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia Bridge Steel Structures     with Best SalesChina wholesaler Beam Profile Drilling CNC Machinery CNC H Beam Marking Drilling Machine for Indonesia Bridge Steel Structures     with Best Sales

    China Best Sales CNC Drilling Machine for Window and Door Processing Machinery near me manufacturer

    Product Description

     CNC aluminum profile Milling Machine SKX-CNC-1200

    Product Description

    Feature

    1. The machine is used for drilling holes, milling grooves, processing round holes and special-shaped holes,plane engraving of aluminum alloy profiles.

    2. Adopted ZheJiang Syntec CNC Control system.

    3. Adopted the electric spindle, high precision, high safety and reliability.

    4. X axle adopts high precision helical gear and rack, Y and Z axiss adopt high-precision ball screw trassmission, steady transmission and high precision.

    5. By using programming software to transform and process G code automatically, easy operation, high efficiency and low labour intensity.

    6. workbench can turn 180°,-90°0°+90°, it can realize material three-sides section processing by clamping 1 time, it can process deep and special-shaped holes through workbench turning, high efficiency and precision,

    Product Parameters

     

    Parameter

     

    Air Pressure

    0.5~0.6MPa

    X/Y/Z Axis stroke

    1200mm*300mm*280mm

    Input Voltage

    380V 50Hz or As Customer need

    Input Power

    3Kw

    Handle type

    ER25*Φ8

    Processing range

    100*140

    Overall size

    2200×1500×19500mm

    Weight

    700kg

    Main accessory

     

    Control system

    ZheJiang  Syntec

    Solenoid valve

    Germany FESTO

    Cylinder

    PC(FESTO Joint Venture Brand)

    Motor

    ZheJiang  SHangZhou (Best Chinese Motor Brand)

    Air Filter Device

    STNC

    Electrical Button and Switcher

    Schneider

    AC Contactor and Circuit Breaker

    Schneider

    Approach Switch

    ZheJiang  Delta

    Xihu (West Lake) Dis. rail

    ZheJiang  Hiwin

    Standard accessory

     

    Cutters

    4pcs

    Air Gun

    1pc

    Complete tooling

    1set

    Certificate

    1pc

    Operation Manual

    1pc

    Remarks

    1. All the electrical elements,Circuit breaker protection and AC contactors are schneider or other world famous brand.

    2. International CE standard high flexibility, high shielding cables.

    3. Warranty time: 1 year

    4. Quotation Valid: 90 days                                                                               

    5. Payment terms: 30%T/T as deposit, 70% balance made before shipment by T/T

    6. Delivery time: 30 days upon receipt of 30% deposit by T/T         

    7. Packaging: Film packaging and fumigation-free wooden case(if delivery by full container load, then without wooden box, just use the tray)

    8. After sales service:      

    1)24 hours service on Internet and Telephone, free instructions and problem solving  

    2) Free training to make sure a master of the operating of cnc router for the person who come to our factory  

    3)User-friendly English manual or operating video for machine using and maintaining

    4) on-the-spot training, installation and repairing can be met if required.(If so, need the buyer afford the visa and air ticket and 60USD/DAY Salary)
     

    Detailed Photos

     

    Other machines:

     

     

    Stiffness and Torsional Vibration of Spline-Couplings

    In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
    splineshaft

    Stiffness of spline-coupling

    The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
    A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
    The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
    Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
    The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
    Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
    splineshaft

    Characteristics of spline-coupling

    The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
    The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
    Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
    The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
    The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
    Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

    Stiffness of spline-coupling in torsional vibration analysis

    This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
    The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
    Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
    The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
    It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
    splineshaft

    Effect of spline misalignment on rotor-spline coupling

    In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
    An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
    Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
    This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
    Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
    The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

    China Best Sales CNC Drilling Machine for Window and Door Processing Machinery     near me manufacturer China Best Sales CNC Drilling Machine for Window and Door Processing Machinery     near me manufacturer