China Custom Strong Cage Needle Roller Bearing near me shop

Product Description


Features

Compact radial structure;
More rolling contact surfaces and strong .

Product Description

Needle roller bearings are bearings with cylindrical rollers that are small in diameter relative to their length. The modified roller/raceway profile prevents stress peaks to extend bearing service life.Needle roller bearings are equipped with thin and long rollers, so the radial structure is compact.With the same inner diameter and load capacity as other types of bearings, its outer diameter is smallest, especially suitable for the support structure with limited radial installation size.

Needle roller bearings comprise machined outer rings, needle roller and cage assemblies and removable inner rings. Depending on the application, a bearing without an inner ring or a needle roller and cage assembly can be selected. In order to ensure the same load capacity and running performance as like the bearing with ring, the hardness, machining accuracy and surface quality of the raceway surface of the shaft or housing hole should be similar to the raceway of the bearing ring. This type of bearing can only bear radial loads.

Main applications:

Automobile transmission, gearbox, engine, valve train, direction and brake system, axle support, outboard engine, power tool, copy and fax machine, paper feeding equipment, etc.

Product Parameters

Bearings Number Dimension(mm)
d F D B
NA495 5 7 13 10
NA496 6 8 15 10
NA497 7 9 17 10
NA498 8 10 19 11
NA499 9 12 20 11
NA4900 10 14 22 13
NA4901 12 16 24 13
NA4902 15 20 28 13
NA4903 17 22 30 13
NA4904 20 25 37 17
NA49/22 22 28 39 17
NA4905 25 30 42 17
NA49/28 28 32 45 17
NA4906 30 35 47 17
NA49/32 32 40 52 20
NA4907 35 42 55 20
NA4908 40 48 62 22
NA4909 45 52 68 22
NA4910 50 58 72 22
NA4911 55 63 80 25
NA4912 60 68 85 25
NA4913 65 72 90 25
NA4914 70 80 100 30
NA4915 75 85 105 30
NA4916 80 90 110 30
NA4917 85 100 120 35
NA4918 90 105 125 35
NA4919 95 110 130 35
NA4920 100 115 140 40
NA4922 110 125 150 40

 

This parameter table is not complete, please contact us for details.

Company Profile

ZheJiang CZPT Machinery Co., Ltd, Xihu (West Lake) Dis. High-precision Bearings Co., Ltd belongs to CZPT group. It is located in Industrial Development Zone of Liao-cheng city, which is bearings manufacturing base in China. We have been specialized in the production of auto parts, bearings and retainers since year 1986.

Our factory covers an area of 120,000 sq.m, with a construction area of 66,000 sq.m. There are more than 600 employees, 50 management personnel, 80 technical engineers and 60 quality inspectors. We are famous manufacturer group for our strict quality control system and hard-working team.

There are more than 40 sets of high-precision mold processing equipment, 150 sets of various CNC lathes, 200 sets of white dynamic grinding machines, 120 sets of stamping equipment, 16 sets of special demagnetization machines, 10 sets of high-pressure spray cleaning machines, 6 sets ultrasonic cleaning machines and 6 automatic bearing grinding lines. They are also equipped with advanced hardness tester, length measuring instrument, sine instrument, spectrometer, infrared carbon and sulfur analyzer, CZPT hardness tester, roughness profiler, electronic tensile testing machine, metallographic microscope, projection coordinate instrument, roundness instrument, ABLT-2 life testing machine, three-coordinate testing machine and so on. We are ready to provide customers with high-quality precision bearing products.

Our company passed ISO9001, ISO/TS16949 and IATF16949 quality management system. Our products are CE / SGS certified. Through introducing world-leading technology and bring together domestic high-tech talents, it ensures our rapid growth and competitive advantages.

Sincerely wish you visit our factory!

 

FAQ

Q1: Do you provide samples? Is it free or extra?

Yes, we can provide a small amount of free samples. Do you mind paying the freight?

Q2: Can you accept OEM or non-standard Bearings ?

Any requirement for non-standard roller bearings is easily fulfilled by us due to our engineers’ rich experience.

Q3: What is your latest delivery time?

Most orders will be shipped within 7-15 days of payment  received.

Q4:Does your company have quality assurance?

Yes, for 2 years.

Q5:Which payment method does your company support?

T/T is best, but we can also accept L/C.

Q6:How to contact us quickly?

Please send us an inquiry or message and leave your other contact information, such as phone number,   or account, we will contact you as soon as possible and provide the detailed information.
 

 

What Are the Advantages of a Splined Shaft?

If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts

When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are 2 main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each 1 is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
splineshaft

They provide low noise, low wear and fatigue failure

The splines in a splined shaft are composed of 2 main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
splineshaft

They can be machined using a slotting or shaping machine

Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are 2 common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between 2 centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.

China Custom Strong Cage Needle Roller Bearing     near me shop China Custom Strong Cage Needle Roller Bearing     near me shop