China best High Precision CNC Machining Center Xk7126 Vertical Machining Center with Best Sales

Product Description

Products Description:

CNC Machining Center XK7126 Vertical Machining Center

As 1 new product of independent design & development, XH7126 is a multi-purpose machine which could mill surface
& drill holes. 
This machine adopts domestic/overseas branded numerical control system and realizes full-screen edition in Chinese.
Spindle adopts imported frequency converters, which could fulfill variable speed control & constant linear speed cutting
functions; machining body adopts ultrasonic frequency hardening treatment; both X-axle & Z-axle adopts step/servo motor,
which could process feeding motion by directly connecting shaft coupling & ball screws.
With high power, pleasant rigidity, high precision & storage, high price-quality ratio and long cycle life, the machine is widely
applied to instruments, meters, light industries, electronics, home appliances, medical instruments, aeronautics & astronautics
and etc. industries, it is 1 small-medium precision & complex machine for processing various materials(especially non-ferrous
metals & stainless steel) as well as an ideal equipments for large automation production.This machine could process holes below
∮16, milling plane below 18 and milling depth below 3mm.



Technical Parameter:

Model XH7126
Main Motor Power KW 3.7KW
Spindle Max. Rotating Speed Servo Spindle 6000rpm 
Z Motor Torque 7.7N.m
X Motor Torque 6N.m
Y Motor Torque 6N.m
Spindle Taper BT30
Worktable Size 800X260mm
Travel(Longitudinal X/Horizontal Y/Vertical Z) 450X320X420mm
Distance of Spindle Axis to Xihu (West Lake) Dis.way Plane 360mm
Distance of Spindle End to Worktable 60-480mm
The Vertical Permissible Error of Spindle Axis to Worktable Plane ≤0.02mm
Positioning Accuracy 0.02mm
Repeated Positioning Accuracy 0.01mm
Machine Overall Dimension (L*W*H) mm 2600*1950*2400
Machine Net Weight KG 2400
Magazine Capacity 12 (umbrella type)
External Protection Full Closed
Controller GSK980MDI

Standard accessories:

No. Name
1 GSK980 Control System
2 12 tools umbrella type Magazine
3 Linear CZPT way
4 Oil coolant pump
5 Working Lamp
6 Mobile pulse generator
7 Air gun
8 Full closed protection

Optional accessories:

No. Name
1 Siemens 808D control system
2 Semi-protection


Company Information:

Package & Shipping:

1: What’s your main products of your company?
A : We specialized in all kinds of machines ,such as CNC Lathe Machine ,CNC Milling Machine ,Vertical Machining Center ,Lathe Machines ,Drilling Machine ,
Radial Drilling Machine ,Sawing Machine ,Shaper machine and so on .
2:What kind of controlsdo you use on machines?
A :Siemens,GSK ,Fanuc etc. You can choose according to your requirements .
3. What is your trade terms?
A : FOB, CFR and CIF all acceptable.
4 : How can I choose the most suitable machines ?
A : Please tell me the model or parameter you are interested in, we can provide you with the best price and quality.
You can also send us product pictures and we will choose the most suitable machine for you.
5 : Do we receive any updates while machine is in the manufacturing process?
A : Of course. The progress of the machine will be updated regularly and sent to you.




The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China best High Precision CNC Machining Center Xk7126 Vertical Machining Center     with Best SalesChina best High Precision CNC Machining Center Xk7126 Vertical Machining Center     with Best Sales